refactor: Lint

This commit is contained in:
jstoobysmith 2024-10-28 07:45:25 +00:00
parent fe9cb6d01c
commit c6f4448bc8

View file

@ -8,7 +8,6 @@ import HepLean.Tensors.Tree.Basic
## Products and contractions
-/
open IndexNotation
@ -40,7 +39,7 @@ def leftContrEquivSuccSucc : Fin (n.succ.succ + n1) ≃ Fin ((n + n1).succ.succ)
def leftContrEquivSucc : Fin (n.succ + n1) ≃ Fin ((n + n1).succ) :=
(Fin.castOrderIso (by omega)).toEquiv
def leftContrI (n1 : ): Fin ((n + n1).succ.succ) := leftContrEquivSuccSucc <| Fin.castAdd n1 q.i
def leftContrI (n1 : ) : Fin ((n + n1).succ.succ) := leftContrEquivSuccSucc <| Fin.castAdd n1 q.i
def leftContrJ (n1 : ) : Fin ((n + n1).succ) := leftContrEquivSucc <| Fin.castAdd n1 q.j
@ -81,7 +80,6 @@ lemma succAbove_leftContrJ_leftContrI_natAdd (x : Fin n1) :
<;> simp_all [leftContrEquivSucc]
<;> omega
def leftContr : ContrPair ((Sum.elim c c1 ∘ (@finSumFinEquiv n.succ.succ n1).symm.toFun) ∘
leftContrEquivSuccSucc.symm) where
i := q.leftContrI n1
@ -92,8 +90,9 @@ def leftContr : ContrPair ((Sum.elim c c1 ∘ (@finSumFinEquiv n.succ.succ n1).s
simpa only [leftContrI, Nat.succ_eq_add_one, Equiv.symm_apply_apply,
finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl] using q.h
lemma leftContr_map_eq : ((Sum.elim c (OverColor.mk c1).hom ∘ finSumFinEquiv.symm.toFun) ∘ ⇑leftContrEquivSuccSucc.symm) ∘
(q.leftContr (c1 := c1)).i.succAbove ∘ (q.leftContr (c1 := c1)).j.succAbove =
lemma leftContr_map_eq : ((Sum.elim c (OverColor.mk c1).hom ∘ finSumFinEquiv.symm.toFun) ∘
⇑leftContrEquivSuccSucc.symm) ∘ (q.leftContr (c1 := c1)).i.succAbove ∘
(q.leftContr (c1 := c1)).j.succAbove =
Sum.elim (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)).hom (OverColor.mk c1).hom ∘
⇑finSumFinEquiv.symm := by
funext x
@ -137,12 +136,15 @@ lemma sum_inr_succAbove_leftContrI_leftContrJ (k : Fin n1) : finSumFinEquiv.sym
Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
erw [succAbove_leftContrJ_leftContrI_natAdd]
simp
lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) → CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i }))
(q' : (i : (𝟭 Type).obj (OverColor.mk c1).left) → CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c1).hom i })):
lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) →
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i }))
(q' : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c1).hom i })) :
(S.F.map (equivToIso finSumFinEquiv).hom).hom
((S.F.μ (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)) (OverColor.mk c1)).hom
((q.contrMap.hom (PiTensorProduct.tprod S.k p)) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q'))
= (S.F.map (mkIso (by exact leftContr_map_eq q)).hom).hom
= (S.F.map (mkIso (by simpa using leftContr_map_eq q)).hom).hom
(q.leftContr.contrMap.hom
((S.F.map (equivToIso (@leftContrEquivSuccSucc n n1)).hom).hom
((S.F.map (equivToIso finSumFinEquiv).hom).hom
@ -171,7 +173,7 @@ lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) → C
conv_rhs => rw [contrMap, TensorSpecies.contrMap_tprod]
simp only [TensorProduct.smul_tmul, TensorProduct.tmul_smul, map_smul]
have hL (a : Fin n.succ.succ) {b : Fin (n + 1 + 1) ⊕ Fin n1}
(h : b = Sum.inl a) : p a = (S.FDiscrete.map (Discrete.eqToHom (by rw [h]; simp ))).hom
(h : b = Sum.inl a) : p a = (S.FDiscrete.map (Discrete.eqToHom (by rw [h]; simp))).hom
((lift.discreteSumEquiv S.FDiscrete b)
(HepLean.PiTensorProduct.elimPureTensor p q' b)) := by
subst h
@ -206,11 +208,10 @@ lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) → C
exact Eq.symm ((fun f => (Equiv.apply_eq_iff_eq_symm_apply f).mp) finSumFinEquiv rfl)
· simp only [Discrete.functor_obj_eq_as, Function.comp_apply, AddHom.toFun_eq_coe,
LinearMap.coe_toAddHom, equivToIso_homToEquiv]
change _ = (S.FDiscrete.map (Discrete.eqToHom _) ≫ S.FDiscrete.map (Discrete.eqToHom _)).hom _
change _ = (S.FDiscrete.map (Discrete.eqToHom _) ≫
S.FDiscrete.map (Discrete.eqToHom _)).hom _
rw [← S.FDiscrete.map_comp]
simp only [eqToHom_trans]
/- a = q.i.succAbove q.j, d = q.i, b = (finSumFinEquiv.symm (leftContrEquivSuccSucc.symm (q.leftContr.i.succAbove q.leftContr.j))
h : c (q.i.succAbove q.j) = S.τ (c q.i) -/
have h1 {a d : Fin n.succ.succ} {b : Fin (n + 1 + 1) ⊕ Fin n1}
(h1' : b = Sum.inl a) (h2' : c a = S.τ (c d)) :
(S.FDiscrete.map (Discrete.eqToHom h2')).hom (p a) =
@ -227,7 +228,7 @@ lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) → C
conv_lhs => erw [lift.map_tprod]
apply congrArg
funext k
simp only [ Functor.id_obj, mk_hom, Function.comp_apply,
simp only [Functor.id_obj, mk_hom, Function.comp_apply,
equivToIso_homToEquiv, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, instMonoidalCategoryStruct_tensorObj_hom,
LinearEquiv.ofLinear_apply, Equiv.toFun_as_coe, equivToIso_mkIso_hom, Equiv.refl_symm,
@ -235,16 +236,17 @@ lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) → C
have h1 (l : (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)).left ⊕ (OverColor.mk c1).left)
(l' : Fin n.succ.succ ⊕ Fin n1)
(h : Sum.elim c c1 l' = Sum.elim (c ∘ q.i.succAbove ∘ q.j.succAbove) c1 l)
(h' : l' = (Sum.map (q.i.succAbove ∘ q.j.succAbove) id l))
: (lift.discreteSumEquiv S.FDiscrete l)
(HepLean.PiTensorProduct.elimPureTensor (fun k => p (q.i.succAbove (q.j.succAbove k))) q' l) =
(S.FDiscrete.map (eqToHom (by simp [h] ))).hom
(h' : l' = (Sum.map (q.i.succAbove ∘ q.j.succAbove) id l)) :
(lift.discreteSumEquiv S.FDiscrete l)
(HepLean.PiTensorProduct.elimPureTensor
(fun k => p (q.i.succAbove (q.j.succAbove k))) q' l) =
(S.FDiscrete.map (eqToHom (by simp [h]))).hom
((lift.discreteSumEquiv S.FDiscrete l')
(HepLean.PiTensorProduct.elimPureTensor p q' l')) := by
subst h'
match l with
| Sum.inl l =>
simp only [ instMonoidalCategoryStruct_tensorObj_hom, mk_hom,
simp only [instMonoidalCategoryStruct_tensorObj_hom, mk_hom,
Sum.elim_inl, Function.comp_apply, Functor.id_obj, Sum.map_inl, eqToHom_refl,
Discrete.functor_map_id, Action.id_hom, ModuleCat.id_apply]
rfl
@ -276,9 +278,8 @@ lemma contr_prod
(t : TensorTree S c) (t1 : TensorTree S c1) :
(prod (contr q.i q.j q.h t) t1).tensor = ((perm (OverColor.mkIso q.leftContr_map_eq).hom
(contr (q.leftContrI n1) (q.leftContrJ n1)
q.leftContr.h (
perm (OverColor.equivToIso ContrPair.leftContrEquivSuccSucc).hom (prod t t1)
))).tensor) := by
q.leftContr.h
(perm (OverColor.equivToIso ContrPair.leftContrEquivSuccSucc).hom (prod t t1)))).tensor) := by
simp only [contr_tensor, perm_tensor, prod_tensor]
change ((q.contrMap ▷ S.F.obj (OverColor.mk c1)) ≫ (S.F.μ _ ((OverColor.mk c1))) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom (t.tensor ⊗ₜ[S.k] t1.tensor) = _
@ -297,7 +298,7 @@ lemma contr_prod
-/
def rightContrI (n1 : ): Fin ((n1 + n).succ.succ) := Fin.natAdd n1 q.i
def rightContrI (n1 : ) : Fin ((n1 + n).succ.succ) := Fin.natAdd n1 q.i
def rightContrJ (n1 : ) : Fin ((n1 + n).succ) := Fin.natAdd n1 q.j
@ -366,38 +367,38 @@ lemma rightContr_map_eq : ((Sum.elim c1 (OverColor.mk c).hom ∘ finSumFinEquiv.
erw [succAbove_rightContrJ_rightContrI_natAdd]
simp only [finSumFinEquiv_symm_apply_natAdd, Sum.elim_inr, Function.comp_apply]
lemma sum_inl_succAbove_rightContrI_rightContrJ (k : Fin n1): (@finSumFinEquiv n1 n.succ.succ).symm
lemma sum_inl_succAbove_rightContrI_rightContrJ (k : Fin n1) : (@finSumFinEquiv n1 n.succ.succ).symm
((q.rightContr (c1 := c1)).i.succAbove
((q.rightContr (c1 := c1)).j.succAbove
(((@finSumFinEquiv n1 n) (Sum.inl k))))) =
Sum.map id (q.i.succAbove ∘ q.j.succAbove) (finSumFinEquiv.symm (finSumFinEquiv (Sum.inl k))) := by
((q.rightContr (c1 := c1)).j.succAbove (((@finSumFinEquiv n1 n) (Sum.inl k))))) =
Sum.map id (q.i.succAbove ∘ q.j.succAbove)
(finSumFinEquiv.symm (finSumFinEquiv (Sum.inl k))) := by
simp only [leftContr, Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrI,
Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
erw [succAbove_rightContrJ_rightContrI_castAdd]
simp
lemma sum_inr_succAbove_rightContrI_rightContrJ (k : Fin n): (@finSumFinEquiv n1 n.succ.succ).symm
lemma sum_inr_succAbove_rightContrI_rightContrJ (k : Fin n) : (@finSumFinEquiv n1 n.succ.succ).symm
((q.rightContr (c1 := c1)).i.succAbove
((q.rightContr (c1 := c1)).j.succAbove
(
(finSumFinEquiv (Sum.inr k))))) =
Sum.map id (q.i.succAbove ∘ q.j.succAbove) (finSumFinEquiv.symm (finSumFinEquiv (Sum.inr k))):= by
((q.rightContr (c1 := c1)).j.succAbove ((finSumFinEquiv (Sum.inr k))))) =
Sum.map id (q.i.succAbove ∘ q.j.succAbove)
(finSumFinEquiv.symm (finSumFinEquiv (Sum.inr k))) := by
simp only [leftContr, Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrI,
Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
erw [succAbove_rightContrJ_rightContrI_natAdd]
simp
lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) → CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c1).hom i }))
(q' : (i : (𝟭 Type).obj (OverColor.mk c).left) → CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i })):
lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c1).hom i }))
(q' : (i : (𝟭 Type).obj (OverColor.mk c).left) →
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i })) :
(S.F.map (equivToIso finSumFinEquiv).hom).hom
((S.F.μ (OverColor.mk c1) (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove))).hom
((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (q.contrMap.hom (PiTensorProduct.tprod S.k q')))) =
(S.F.map (mkIso (by exact (rightContr_map_eq q))).hom).hom
(S.F.map (mkIso (by simpa using (rightContr_map_eq q))).hom).hom
(q.rightContr.contrMap.hom
(((S.F.map (equivToIso finSumFinEquiv).hom ).hom
((S.F.μ (OverColor.mk c1) (OverColor.mk c)).hom ((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q'))))) := by
(((S.F.map (equivToIso finSumFinEquiv).hom).hom
((S.F.μ (OverColor.mk c1) (OverColor.mk c)).hom
((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q'))))) := by
conv_lhs => rw [contrMap, TensorSpecies.contrMap_tprod]
simp only [TensorSpecies.F_def]
conv_rhs => rw [lift.obj_μ_tprod_tmul]
@ -429,7 +430,7 @@ lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
· erw [ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply]
simp
have hL (a : Fin n.succ.succ) {b : Fin n1 ⊕ Fin n.succ.succ}
(h : b = Sum.inr a) : q' a = (S.FDiscrete.map (Discrete.eqToHom (by rw [h]; simp ))).hom
(h : b = Sum.inr a) : q' a = (S.FDiscrete.map (Discrete.eqToHom (by rw [h]; simp))).hom
((lift.discreteSumEquiv S.FDiscrete b)
(HepLean.PiTensorProduct.elimPureTensor p q' b)) := by
subst h
@ -438,11 +439,12 @@ lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
ModuleCat.id_apply]
rfl
apply hL
simp [rightContr, rightContrI]
· erw [ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply]
simp only [Discrete.functor_obj_eq_as, Function.comp_apply, AddHom.toFun_eq_coe,
simp only [Nat.succ_eq_add_one, rightContr, Nat.add_eq, Equiv.toFun_as_coe, rightContrI,
finSumFinEquiv_symm_apply_natAdd]
· simp only [Discrete.functor_obj_eq_as, Function.comp_apply, AddHom.toFun_eq_coe,
LinearMap.coe_toAddHom, equivToIso_homToEquiv]
change _ = (S.FDiscrete.map (Discrete.eqToHom _) ≫ S.FDiscrete.map (Discrete.eqToHom _)).hom _
change _ = (S.FDiscrete.map (Discrete.eqToHom _) ≫
S.FDiscrete.map (Discrete.eqToHom _)).hom _
rw [← S.FDiscrete.map_comp]
simp
have h1 {a d : Fin n.succ.succ} {b : Fin n1 ⊕ Fin (n + 1 + 1) }
@ -461,21 +463,22 @@ lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
conv_lhs => erw [lift.map_tprod]
apply congrArg
funext k
simp only [ Functor.id_obj, mk_hom, Function.comp_apply,
simp only [Functor.id_obj, mk_hom, Function.comp_apply,
equivToIso_homToEquiv, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, instMonoidalCategoryStruct_tensorObj_hom,
LinearEquiv.ofLinear_apply, Equiv.toFun_as_coe, equivToIso_mkIso_hom, Equiv.refl_symm,
Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv, eqToIso.inv]
conv_rhs => repeat erw [ModuleCat.id_apply]
simp [Nat.succ_eq_add_one, AddHom.toFun_eq_coe, LinearMap.coe_toAddHom,
simp only [Nat.succ_eq_add_one, Nat.add_eq, AddHom.toFun_eq_coe, LinearMap.coe_toAddHom,
LinearEquiv.coe_coe]
have h1 (l : (OverColor.mk c1).left ⊕ (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)).left)
(l' :Fin n1 ⊕ Fin n.succ.succ )
(l' :Fin n1 ⊕ Fin n.succ.succ)
(h : Sum.elim c1 c l' = Sum.elim c1 (c ∘ q.i.succAbove ∘ q.j.succAbove) l)
(h' : l' = (Sum.map id (q.i.succAbove ∘ q.j.succAbove) l))
: (lift.discreteSumEquiv S.FDiscrete l)
(HepLean.PiTensorProduct.elimPureTensor p (fun k => q' (q.i.succAbove (q.j.succAbove k))) l) =
(S.FDiscrete.map (eqToHom (by simp [h] ))).hom
(h' : l' = (Sum.map id (q.i.succAbove ∘ q.j.succAbove) l)) :
(lift.discreteSumEquiv S.FDiscrete l)
(HepLean.PiTensorProduct.elimPureTensor p
(fun k => q' (q.i.succAbove (q.j.succAbove k))) l) =
(S.FDiscrete.map (eqToHom (by simp [h]))).hom
((lift.discreteSumEquiv S.FDiscrete l')
(HepLean.PiTensorProduct.elimPureTensor p q' l')) := by
subst h'
@ -511,11 +514,9 @@ lemma prod_contrMap :
lemma prod_contr (t1 : TensorTree S c1) (t : TensorTree S c) :
(prod t1 (contr q.i q.j q.h t)).tensor = ((perm (OverColor.mkIso q.rightContr_map_eq).hom
(contr (q.rightContrI n1) (q.rightContrJ n1)
q.rightContr.h (
(prod t1 t)
))).tensor) := by
q.rightContr.h (prod t1 t))).tensor) := by
simp only [contr_tensor, perm_tensor, prod_tensor]
change ( (S.F.obj (OverColor.mk c1) ◁ q.contrMap) ≫ (S.F.μ ((OverColor.mk c1)) _) ≫
change ((S.F.obj (OverColor.mk c1) ◁ q.contrMap) ≫ (S.F.μ ((OverColor.mk c1)) _) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom (t1.tensor ⊗ₜ[S.k] t.tensor) = _
rw [prod_contrMap]
simp only [Nat.succ_eq_add_one, Functor.id_obj, mk_hom, Action.instMonoidalCategory_tensorObj_V,
@ -531,21 +532,20 @@ end ContrPair
theorem contr_prod {n n1 : } {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} {i : Fin n.succ.succ}
{j : Fin n.succ} (hij : c (i.succAbove j) = S.τ (c i))
(t : TensorTree S c) (t1 : TensorTree S c1) :
(prod (contr i j hij t) t1).tensor = ((perm (OverColor.mkIso (ContrPair.mk i j hij).leftContr_map_eq).hom
(prod (contr i j hij t) t1).tensor =
((perm (OverColor.mkIso (ContrPair.mk i j hij).leftContr_map_eq).hom
(contr ((ContrPair.mk i j hij).leftContrI n1) ((ContrPair.mk i j hij).leftContrJ n1)
(ContrPair.mk i j hij).leftContr.h (
perm (OverColor.equivToIso ContrPair.leftContrEquivSuccSucc).hom (prod t t1)
))).tensor) :=
perm (OverColor.equivToIso ContrPair.leftContrEquivSuccSucc).hom (prod t t1)))).tensor) :=
(ContrPair.mk i j hij).contr_prod t t1
theorem prod_contr {n n1 : } {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} {i : Fin n.succ.succ}
{j : Fin n.succ} (hij : c (i.succAbove j) = S.τ (c i))
(t1 : TensorTree S c1) (t : TensorTree S c) :
(prod t1 (contr i j hij t)).tensor = ((perm (OverColor.mkIso (ContrPair.mk i j hij).rightContr_map_eq).hom
(prod t1 (contr i j hij t)).tensor =
((perm (OverColor.mkIso (ContrPair.mk i j hij).rightContr_map_eq).hom
(contr ((ContrPair.mk i j hij).rightContrI n1) ((ContrPair.mk i j hij).rightContrJ n1)
(ContrPair.mk i j hij).rightContr.h (
(prod t1 t)
))).tensor) :=
(ContrPair.mk i j hij).rightContr.h (prod t1 t))).tensor) :=
(ContrPair.mk i j hij).prod_contr t1 t
end TensorTree