doc: More doc strings.
This commit is contained in:
parent
c24029c9ca
commit
c6fdcbbe7d
3 changed files with 14 additions and 0 deletions
|
@ -70,14 +70,17 @@ def δ₁₃ (V : Quotient CKMMatrixSetoid) : ℝ :=
|
|||
|
||||
section sines
|
||||
|
||||
/-- For a CKM matrix `sin θ₁₂` is non-negative. -/
|
||||
lemma S₁₂_nonneg (V : Quotient CKMMatrixSetoid) : 0 ≤ S₁₂ V := by
|
||||
rw [S₁₂, div_nonneg_iff]
|
||||
apply Or.inl
|
||||
apply (And.intro (VAbs_ge_zero 0 1 V) (Real.sqrt_nonneg (VudAbs V ^ 2 + VusAbs V ^ 2)))
|
||||
|
||||
/-- For a CKM matrix `sin θ₁₃` is non-negative. -/
|
||||
lemma S₁₃_nonneg (V : Quotient CKMMatrixSetoid) : 0 ≤ S₁₃ V :=
|
||||
VAbs_ge_zero 0 2 V
|
||||
|
||||
/-- For a CKM matrix `sin θ₂₃` is non-negative. -/
|
||||
lemma S₂₃_nonneg (V : Quotient CKMMatrixSetoid) : 0 ≤ S₂₃ V := by
|
||||
by_cases ha : VubAbs V = 1
|
||||
· rw [S₂₃, if_pos ha]
|
||||
|
@ -86,6 +89,7 @@ lemma S₂₃_nonneg (V : Quotient CKMMatrixSetoid) : 0 ≤ S₂₃ V := by
|
|||
apply Or.inl
|
||||
apply And.intro (VAbs_ge_zero 1 2 V) (Real.sqrt_nonneg (VudAbs V ^ 2 + VusAbs V ^ 2))
|
||||
|
||||
/-- For a CKM matrix `sin θ₁₂` is less then or equal to 1. -/
|
||||
lemma S₁₂_leq_one (V : Quotient CKMMatrixSetoid) : S₁₂ V ≤ 1 := by
|
||||
rw [S₁₂, @div_le_one_iff]
|
||||
by_cases h1 : √(VudAbs V ^ 2 + VusAbs V ^ 2) = 0
|
||||
|
@ -101,9 +105,11 @@ lemma S₁₂_leq_one (V : Quotient CKMMatrixSetoid) : S₁₂ V ≤ 1 := by
|
|||
simp only [Fin.isValue, le_add_iff_nonneg_left]
|
||||
exact sq_nonneg (VAbs 0 0 V)
|
||||
|
||||
/-- For a CKM matrix `sin θ₁₃` is less then or equal to 1. -/
|
||||
lemma S₁₃_leq_one (V : Quotient CKMMatrixSetoid) : S₁₃ V ≤ 1 :=
|
||||
VAbs_leq_one 0 2 V
|
||||
|
||||
/-- For a CKM matrix `sin θ₂₃` is less then or equal to 1. -/
|
||||
lemma S₂₃_leq_one (V : Quotient CKMMatrixSetoid) : S₂₃ V ≤ 1 := by
|
||||
by_cases ha : VubAbs V = 1
|
||||
· rw [S₂₃, if_pos ha]
|
||||
|
|
|
@ -108,6 +108,7 @@ def altLeftLeftUnit : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ altLeftHanded ⊗ leftHanded
|
|||
simp only [mul_one, ← transpose_mul, SpecialLinearGroup.det_coe, isUnit_iff_ne_zero, ne_eq,
|
||||
one_ne_zero, not_false_eq_true, mul_nonsing_inv, transpose_one]
|
||||
|
||||
/-- Applying the morphism `altLeftLeftUnit` to `1` returns `altLeftLeftUnitVal`. -/
|
||||
lemma altLeftLeftUnit_apply_one : altLeftLeftUnit.hom (1 : ℂ) = altLeftLeftUnitVal := by
|
||||
change altLeftLeftUnit.hom.toFun (1 : ℂ) = altLeftLeftUnitVal
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
|
|
|
@ -15,6 +15,8 @@ This file introduce 4d Minkowski spacetime.
|
|||
|
||||
noncomputable section
|
||||
|
||||
/-! TODO: SpaceTime should be refactored into a structure, to prevent casting. -/
|
||||
|
||||
/-- The space-time -/
|
||||
def SpaceTime : Type := Fin 4 → ℝ
|
||||
|
||||
|
@ -59,18 +61,22 @@ lemma stdBasis_not_eq {μ ν : Fin 4} (h : μ ≠ ν) : stdBasis μ ν = 0 := by
|
|||
rw [stdBasis_apply]
|
||||
exact if_neg h
|
||||
|
||||
/-- For space-time,`stdBasis 0` is equal to `![1, 0, 0, 0] `. -/
|
||||
lemma stdBasis_0 : stdBasis 0 = ![1, 0, 0, 0] := by
|
||||
funext i
|
||||
fin_cases i <;> simp [stdBasis_apply]
|
||||
|
||||
/-- For space-time,`stdBasis 1` is equal to `![0, 1, 0, 0] `. -/
|
||||
lemma stdBasis_1 : stdBasis 1 = ![0, 1, 0, 0] := by
|
||||
funext i
|
||||
fin_cases i <;> simp [stdBasis_apply]
|
||||
|
||||
/-- For space-time,`stdBasis 2` is equal to `![0, 0, 1, 0] `. -/
|
||||
lemma stdBasis_2 : stdBasis 2 = ![0, 0, 1, 0] := by
|
||||
funext i
|
||||
fin_cases i <;> simp [stdBasis_apply]
|
||||
|
||||
/-- For space-time,`stdBasis 3` is equal to `![0, 0, 0, 1] `. -/
|
||||
lemma stdBasis_3 : stdBasis 3 = ![0, 0, 0, 1] := by
|
||||
funext i
|
||||
fin_cases i <;> simp [stdBasis_apply]
|
||||
|
@ -83,6 +89,7 @@ lemma stdBasis_mulVec (μ ν : Fin 4) (Λ : Matrix (Fin 4) (Fin 4) ℝ) :
|
|||
rw [stdBasis_apply, if_neg (Ne.symm h)]
|
||||
exact CommMonoidWithZero.mul_zero (Λ ν x)
|
||||
|
||||
/-- The explicit expansion of a point in spacetime as `![x 0, x 1, x 2, x 3]`. -/
|
||||
lemma explicit (x : SpaceTime) : x = ![x 0, x 1, x 2, x 3] := by
|
||||
funext i
|
||||
fin_cases i <;> rfl
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue