refactor: Some linting
This commit is contained in:
parent
e393ac1b70
commit
c701bf24e8
1 changed files with 14 additions and 16 deletions
|
@ -1,6 +1,6 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.Logic.Function.CompTypeclasses
|
||||
|
@ -37,7 +37,7 @@ inductive RealLorentzTensor.Colors where
|
|||
| up : RealLorentzTensor.Colors
|
||||
| down : RealLorentzTensor.Colors
|
||||
|
||||
/-- The association of colors with indices. For up and down this is `Fin 1 ⊕ Fin d`.-/
|
||||
/-- The association of colors with indices. For up and down this is `Fin 1 ⊕ Fin d`. -/
|
||||
def RealLorentzTensor.ColorsIndex (d : ℕ) (μ : RealLorentzTensor.Colors) : Type :=
|
||||
match μ with
|
||||
| RealLorentzTensor.Colors.up => Fin 1 ⊕ Fin d
|
||||
|
@ -51,7 +51,7 @@ instance (d : ℕ) (μ : RealLorentzTensor.Colors) : Fintype (RealLorentzTensor.
|
|||
/-- An `IndexValue` is a set of actual values an index can take. e.g. for a
|
||||
3-tensor (0, 1, 2). -/
|
||||
@[simp]
|
||||
def RealLorentzTensor.IndexValue {X : FintypeCat} (d : ℕ ) (c : X → RealLorentzTensor.Colors) :
|
||||
def RealLorentzTensor.IndexValue {X : FintypeCat} (d : ℕ) (c : X → RealLorentzTensor.Colors) :
|
||||
Type 0 := (x : X) → RealLorentzTensor.ColorsIndex d (c x)
|
||||
|
||||
/-- A Lorentz Tensor defined by its coordinate map. -/
|
||||
|
@ -246,8 +246,7 @@ lemma congrSet_trans (f : X ≃ Y) (g : Y ≃ Z) :
|
|||
funext T
|
||||
exact congrSetMap_trans f g T
|
||||
|
||||
lemma congrSet_refl : @congrSet d _ _ (Equiv.refl X) = Equiv.refl _ := by
|
||||
rfl
|
||||
lemma congrSet_refl : @congrSet d _ _ (Equiv.refl X) = Equiv.refl _ := rfl
|
||||
|
||||
/-!
|
||||
|
||||
|
@ -255,7 +254,7 @@ lemma congrSet_refl : @congrSet d _ _ (Equiv.refl X) = Equiv.refl _ := by
|
|||
|
||||
-/
|
||||
|
||||
/-- An equivalence through commuting sums between types casted from `FintypeCat.of`.-/
|
||||
/-- An equivalence through commuting sums between types casted from `FintypeCat.of`. -/
|
||||
def sumCommFintypeCat (X Y : FintypeCat) : FintypeCat.of (X ⊕ Y) ≃ FintypeCat.of (Y ⊕ X) :=
|
||||
Equiv.sumComm X Y
|
||||
|
||||
|
@ -289,25 +288,24 @@ def inrIndexValue {Tc : X → Colors} {Sc : Y → Colors}
|
|||
(i : IndexValue d (sumElimIndexColor Tc Sc)) :
|
||||
IndexValue d Sc := fun y => i (Sum.inr y)
|
||||
|
||||
/-- An equivalence between index values formed by commuting sums.-/
|
||||
/-- An equivalence between index values formed by commuting sums. -/
|
||||
def sumCommIndexValue {X Y : FintypeCat} (Tc : X → Colors) (Sc : Y → Colors) :
|
||||
IndexValue d (sumElimIndexColor Tc Sc) ≃ IndexValue d (sumElimIndexColor Sc Tc) :=
|
||||
(congrSetIndexValue d (sumCommFintypeCat X Y) (sumElimIndexColor Tc Sc)).trans
|
||||
(castIndexValue ((sumElimIndexColor_symm Sc Tc).symm))
|
||||
(castIndexValue (sumElimIndexColor_symm Sc Tc).symm)
|
||||
|
||||
lemma sumCommIndexValue_inlIndexValue {X Y : FintypeCat} {Tc : X → Colors} {Sc : Y → Colors}
|
||||
(i : IndexValue d (sumElimIndexColor Tc Sc)) :
|
||||
(i : IndexValue d <| sumElimIndexColor Tc Sc) :
|
||||
inlIndexValue (sumCommIndexValue Tc Sc i) = inrIndexValue i := rfl
|
||||
|
||||
lemma sumCommIndexValue_inrIndexValue {X Y : FintypeCat} {Tc : X → Colors} {Sc : Y → Colors}
|
||||
(i : IndexValue d (sumElimIndexColor Tc Sc)) :
|
||||
(i : IndexValue d <| sumElimIndexColor Tc Sc) :
|
||||
inrIndexValue (sumCommIndexValue Tc Sc i) = inlIndexValue i := rfl
|
||||
|
||||
/-- Equivalence between sets of `RealLorentzTensor` formed by commuting sums. -/
|
||||
@[simps!]
|
||||
def sumComm :
|
||||
RealLorentzTensor d (FintypeCat.of (X ⊕ Y)) ≃ RealLorentzTensor d (FintypeCat.of (Y ⊕ X)) :=
|
||||
congrSet (Equiv.sumComm X Y)
|
||||
def sumComm : RealLorentzTensor d (FintypeCat.of (X ⊕ Y))
|
||||
≃ RealLorentzTensor d (FintypeCat.of (Y ⊕ X)) := congrSet (Equiv.sumComm X Y)
|
||||
|
||||
/-!
|
||||
|
||||
|
@ -405,8 +403,8 @@ def mul {X Y : FintypeCat} (T : Marked d X 1) (S : Marked d Y 1)
|
|||
RealLorentzTensor d (FintypeCat.of (X ⊕ Y)) where
|
||||
color := sumElimIndexColor T.unmarkedColor S.unmarkedColor
|
||||
coord := fun i => ∑ x,
|
||||
T.coord (castIndexValue T.sumElimIndexColor_of_marked
|
||||
(sumElimIndexValue (inlIndexValue i) (T.oneMarkedIndexValue x))) *
|
||||
T.coord (castIndexValue T.sumElimIndexColor_of_marked $
|
||||
sumElimIndexValue (inlIndexValue i) (T.oneMarkedIndexValue x)) *
|
||||
S.coord (castIndexValue S.sumElimIndexColor_of_marked $
|
||||
sumElimIndexValue (inrIndexValue i) (S.oneMarkedIndexValue $ congrColorsDual h x))
|
||||
|
||||
|
@ -426,7 +424,7 @@ lemma sumComm_mul {X Y : FintypeCat} (T : Marked d X 1) (S : Marked d Y 1)
|
|||
rw [mul_comm]
|
||||
repeat apply congrArg
|
||||
rw [← congrColorsDual_symm h]
|
||||
exact (Equiv.apply_eq_iff_eq_symm_apply (congrColorsDual h)).mp rfl
|
||||
exact (Equiv.apply_eq_iff_eq_symm_apply <| congrColorsDual h).mp rfl
|
||||
|
||||
/-! TODO: Following the ethos of modular operads, prove properties of multiplication. -/
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue