refactor: Lint
This commit is contained in:
parent
cd63ec0716
commit
c739a5eeb8
3 changed files with 5 additions and 4 deletions
|
@ -230,7 +230,8 @@ lemma eraseIdx_succ_tail {i : I} {l : List I} (n : ℕ) (hn : n + 1 < (i :: l).l
|
||||||
conv_rhs =>
|
conv_rhs =>
|
||||||
rhs
|
rhs
|
||||||
rw [extractEquiv]
|
rw [extractEquiv]
|
||||||
simp
|
simp only [List.get_eq_getElem, List.length_cons, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
|
||||||
|
Equiv.trans_apply, Equiv.prodCongr_apply, Equiv.coe_refl, Prod.map_snd]
|
||||||
erw [Fin.insertNthEquiv_symm_apply]
|
erw [Fin.insertNthEquiv_symm_apply]
|
||||||
simp only [tail, List.tail_cons, Equiv.piCongr, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
|
simp only [tail, List.tail_cons, Equiv.piCongr, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
|
||||||
Equiv.piCongrRight, Equiv.cast_symm, Equiv.piCongrLeft, OrderIso.toEquiv_symm,
|
Equiv.piCongrRight, Equiv.cast_symm, Equiv.piCongrLeft, OrderIso.toEquiv_symm,
|
||||||
|
|
|
@ -99,13 +99,13 @@ def ofListLift {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (l : List I) (
|
||||||
sumFiber f (ofList l x)
|
sumFiber f (ofList l x)
|
||||||
|
|
||||||
lemma ofListLift_empty {I : Type} (f : I → Type) [∀ i, Fintype (f i)] :
|
lemma ofListLift_empty {I : Type} (f : I → Type) [∀ i, Fintype (f i)] :
|
||||||
ofListLift f [] 1 = 1 := by
|
ofListLift f [] 1 = 1 := by
|
||||||
simp only [ofListLift, EmbeddingLike.map_eq_one_iff]
|
simp only [ofListLift, EmbeddingLike.map_eq_one_iff]
|
||||||
rw [ofList_empty]
|
rw [ofList_empty]
|
||||||
exact map_one (sumFiber f)
|
exact map_one (sumFiber f)
|
||||||
|
|
||||||
lemma ofListLift_empty_smul {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (x : ℂ) :
|
lemma ofListLift_empty_smul {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (x : ℂ) :
|
||||||
ofListLift f [] x = x • 1 := by
|
ofListLift f [] x = x • 1 := by
|
||||||
simp only [ofListLift, EmbeddingLike.map_eq_one_iff]
|
simp only [ofListLift, EmbeddingLike.map_eq_one_iff]
|
||||||
rw [ofList_eq_smul_one]
|
rw [ofList_eq_smul_one]
|
||||||
rw [ofList_empty]
|
rw [ofList_empty]
|
||||||
|
|
|
@ -208,7 +208,7 @@ lemma superCommute_ofList_mul {I : Type} (q : I → Fin 2) (la lb lc : List I) (
|
||||||
`[a, bc] = [a, b] c + b [a, c] ` the `superCommuteSplit` for `n=0` is `[a, b] c`
|
`[a, bc] = [a, b] c + b [a, c] ` the `superCommuteSplit` for `n=0` is `[a, b] c`
|
||||||
and for `n=1` is `b [a, c]`. -/
|
and for `n=1` is `b [a, c]`. -/
|
||||||
def superCommuteSplit {I : Type} (q : I → Fin 2) (la lb : List I) (xa xb : ℂ) (n : ℕ)
|
def superCommuteSplit {I : Type} (q : I → Fin 2) (la lb : List I) (xa xb : ℂ) (n : ℕ)
|
||||||
(hn : n < lb.length) : FreeAlgebra ℂ I :=
|
(hn : n < lb.length) : FreeAlgebra ℂ I :=
|
||||||
superCommuteCoef q la (List.take n lb) •
|
superCommuteCoef q la (List.take n lb) •
|
||||||
ofList (List.take n lb) 1 *
|
ofList (List.take n lb) 1 *
|
||||||
superCommute q (ofList la xa) (FreeAlgebra.ι ℂ (lb.get ⟨n, hn⟩))
|
superCommute q (ofList la xa) (FreeAlgebra.ι ℂ (lb.get ⟨n, hn⟩))
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue