From c768e660a1590272d540546eb7f0d16e8f635c64 Mon Sep 17 00:00:00 2001 From: Pietro Monticone <38562595+pitmonticone@users.noreply.github.com> Date: Mon, 20 May 2024 00:19:25 +0200 Subject: [PATCH] Update LineInCubic.lean --- HepLean/AnomalyCancellation/PureU1/Odd/LineInCubic.lean | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/HepLean/AnomalyCancellation/PureU1/Odd/LineInCubic.lean b/HepLean/AnomalyCancellation/PureU1/Odd/LineInCubic.lean index d7a9000..d5153b5 100644 --- a/HepLean/AnomalyCancellation/PureU1/Odd/LineInCubic.lean +++ b/HepLean/AnomalyCancellation/PureU1/Odd/LineInCubic.lean @@ -16,10 +16,10 @@ import Mathlib.RepresentationTheory.Basic # Line In Cubic Odd case We say that a linear solution satisfies the `lineInCubic` property -if the line through that point and through the two different planes formed by the baisis of +if the line through that point and through the two different planes formed by the basis of `LinSols` lies in the cubic. -We show that for a solution all its permutations satsfiy this property, +We show that for a solution all its permutations satisfy this property, then the charge must be zero. The main reference for this file is: @@ -34,7 +34,7 @@ open BigOperators variable {n : ℕ} open VectorLikeOddPlane -/-- A property on `LinSols`, statified if every point on the line between the two planes +/-- A property on `LinSols`, satisfied if every point on the line between the two planes in the basis through that point is in the cubic. -/ def lineInCubic (S : (PureU1 (2 * n + 1)).LinSols) : Prop := ∀ (g f : Fin n → ℚ) (_ : S.val = Pa g f) (a b : ℚ) , @@ -64,7 +64,7 @@ lemma line_in_cubic_P_P_P! {S : (PureU1 (2 * n + 1)).LinSols} (h : lineInCubic S -/-- We say a `LinSol` satifies `lineInCubicPerm` if all its permutations satsify `lineInCubic`. -/ +/-- We say a `LinSol` satisfies `lineInCubicPerm` if all its permutations satisfy `lineInCubic`. -/ def lineInCubicPerm (S : (PureU1 (2 * n + 1)).LinSols) : Prop := ∀ (M : (FamilyPermutations (2 * n + 1)).group ), lineInCubic ((FamilyPermutations (2 * n + 1)).linSolRep M S)