refactor: Lint
This commit is contained in:
parent
2490535569
commit
c7bd59c981
10 changed files with 120 additions and 90 deletions
|
@ -29,12 +29,13 @@ open HepLean.Fin
|
|||
`j : Option (c.uncontracted)` of `c`.
|
||||
The Wick contraction associated with `(φs.insertIdx i φ).length` formed by 'inserting' `φ`
|
||||
into `φs` after the first `i` elements and contracting it optionally with j. -/
|
||||
def insertAndContract {φs : List 𝓕.States} (φ : 𝓕.States) (φsΛ : WickContraction φs.length)
|
||||
def insertAndContract {φs : List 𝓕.States} (φ : 𝓕.States) (φsΛ : WickContraction φs.length)
|
||||
(i : Fin φs.length.succ) (j : Option φsΛ.uncontracted) :
|
||||
WickContraction (φs.insertIdx i φ).length :=
|
||||
congr (by simp) (φsΛ.insertAndContractNat i j)
|
||||
|
||||
scoped[WickContraction] notation φs "↩Λ" φ:max i:max j => insertAndContract φ φs i j
|
||||
@[inherit_doc insertAndContract]
|
||||
scoped[WickContraction] notation φs "↩Λ" φ:max i:max j => insertAndContract φ φs i j
|
||||
|
||||
@[simp]
|
||||
lemma insertAndContract_fstFieldOfContract (φ : 𝓕.States) (φs : List 𝓕.States)
|
||||
|
@ -56,14 +57,16 @@ lemma insertAndContract_sndFieldOfContract (φ : 𝓕.States) (φs : List 𝓕.S
|
|||
lemma insertAndContract_fstFieldOfContract_some_incl (φ : 𝓕.States) (φs : List 𝓕.States)
|
||||
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted) :
|
||||
(insertAndContract φ φsΛ i (some j)).fstFieldOfContract
|
||||
(congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by simp [insertAndContractNat]⟩) =
|
||||
(congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by
|
||||
simp [insertAndContractNat]⟩) =
|
||||
if i < i.succAbove j.1 then
|
||||
finCongr (insertIdx_length_fin φ φs i).symm i else
|
||||
finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove j.1) := by
|
||||
split
|
||||
· rename_i h
|
||||
refine (insertAndContract φ φsΛ i (some j)).eq_fstFieldOfContract_of_mem
|
||||
(a := congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by simp [insertAndContractNat]⟩)
|
||||
(a := congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by
|
||||
simp [insertAndContractNat]⟩)
|
||||
(i := finCongr (insertIdx_length_fin φ φs i).symm i) (j :=
|
||||
finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove j)) ?_ ?_ ?_
|
||||
· simp [congrLift]
|
||||
|
@ -72,7 +75,8 @@ lemma insertAndContract_fstFieldOfContract_some_incl (φ : 𝓕.States) (φs : L
|
|||
simp_all
|
||||
· rename_i h
|
||||
refine (insertAndContract φ φsΛ i (some j)).eq_fstFieldOfContract_of_mem
|
||||
(a := congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by simp [insertAndContractNat]⟩)
|
||||
(a := congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by
|
||||
simp [insertAndContractNat]⟩)
|
||||
(i := finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove j))
|
||||
(j := finCongr (insertIdx_length_fin φ φs i).symm i) ?_ ?_ ?_
|
||||
· simp [congrLift]
|
||||
|
@ -141,7 +145,8 @@ lemma insertAndContract_some_succAbove_getDual?_eq_option (φ : 𝓕.States) (φ
|
|||
(i.succAbove j)) = Option.map (Fin.cast (insertIdx_length_fin φ φs i).symm ∘ i.succAbove)
|
||||
(φsΛ.getDual? j) := by
|
||||
simp only [Nat.succ_eq_add_one, insertAndContract, getDual?_congr, finCongr_apply, Fin.cast_trans,
|
||||
Fin.cast_eq_self, ne_eq, hkj, not_false_eq_true, insertAndContractNat_some_getDual?_of_neq, Option.map_map]
|
||||
Fin.cast_eq_self, ne_eq, hkj, not_false_eq_true, insertAndContractNat_some_getDual?_of_neq,
|
||||
Option.map_map]
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
|
@ -167,14 +172,16 @@ lemma insertAndContract_none_getDual?_get_eq (φ : 𝓕.States) (φs : List 𝓕
|
|||
lemma insertAndContract_sndFieldOfContract_some_incl (φ : 𝓕.States) (φs : List 𝓕.States)
|
||||
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted) :
|
||||
(φsΛ ↩Λ φ i (some j)).sndFieldOfContract
|
||||
(congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by simp [insertAndContractNat]⟩) =
|
||||
(congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by
|
||||
simp [insertAndContractNat]⟩) =
|
||||
if i < i.succAbove j.1 then
|
||||
finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove j.1) else
|
||||
finCongr (insertIdx_length_fin φ φs i).symm i := by
|
||||
split
|
||||
· rename_i h
|
||||
refine (φsΛ ↩Λ φ i (some j)).eq_sndFieldOfContract_of_mem
|
||||
(a := congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by simp [insertAndContractNat]⟩)
|
||||
(a := congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by
|
||||
simp [insertAndContractNat]⟩)
|
||||
(i := finCongr (insertIdx_length_fin φ φs i).symm i) (j :=
|
||||
finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove j)) ?_ ?_ ?_
|
||||
· simp [congrLift]
|
||||
|
@ -183,7 +190,8 @@ lemma insertAndContract_sndFieldOfContract_some_incl (φ : 𝓕.States) (φs : L
|
|||
simp_all
|
||||
· rename_i h
|
||||
refine (φsΛ ↩Λ φ i (some j)).eq_sndFieldOfContract_of_mem
|
||||
(a := congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by simp [insertAndContractNat]⟩)
|
||||
(a := congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by
|
||||
simp [insertAndContractNat]⟩)
|
||||
(i := finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove j))
|
||||
(j := finCongr (insertIdx_length_fin φ φs i).symm i) ?_ ?_ ?_
|
||||
· simp [congrLift]
|
||||
|
@ -240,8 +248,8 @@ lemma self_not_mem_insertAndContractLiftFinset (φ : 𝓕.States) {φs : List
|
|||
|
||||
lemma succAbove_mem_insertAndContractLiftFinset (φ : 𝓕.States) {φs : List 𝓕.States}
|
||||
(i : Fin φs.length.succ) (a : Finset (Fin φs.length)) (j : Fin φs.length) :
|
||||
Fin.cast (insertIdx_length_fin φ φs i).symm (i.succAbove j) ∈ insertAndContractLiftFinset φ i a ↔
|
||||
j ∈ a := by
|
||||
Fin.cast (insertIdx_length_fin φ φs i).symm (i.succAbove j)
|
||||
∈ insertAndContractLiftFinset φ i a ↔ j ∈ a := by
|
||||
simp only [insertAndContractLiftFinset, Finset.mem_map_equiv, finCongr_symm, finCongr_apply,
|
||||
Fin.cast_trans, Fin.cast_eq_self]
|
||||
simp only [Finset.mem_map, Fin.succAboveEmb_apply]
|
||||
|
@ -268,7 +276,6 @@ lemma insert_fin_eq_self (φ : 𝓕.States) {φs : List 𝓕.States}
|
|||
use z
|
||||
rfl
|
||||
|
||||
|
||||
lemma insertLift_sum (φ : 𝓕.States) {φs : List 𝓕.States}
|
||||
(i : Fin φs.length.succ) [AddCommMonoid M] (f : WickContraction (φs.insertIdx i φ).length → M) :
|
||||
∑ c, f c =
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue