docs: Docs for FieldOpAlgebra

This commit is contained in:
jstoobysmith 2025-02-06 13:06:51 +00:00
parent 83b1a2c87a
commit c81d6ce246
5 changed files with 60 additions and 25 deletions

View file

@ -67,7 +67,11 @@ lemma equiv_iff_exists_add (x y : FieldOpFreeAlgebra 𝓕) :
rw [equiv_iff_sub_mem_ideal]
simp [ha]
/-- The projection of `FieldOpFreeAlgebra` down to `FieldOpAlgebra` as an algebra map. -/
/-- For a field specification `𝓕`, the projection
`𝓕.FieldOpFreeAlgebra →ₐ[] FieldOpAlgebra 𝓕`
taking each element of `𝓕.FieldOpFreeAlgebra` to its equivalence class in `FieldOpAlgebra 𝓕`. -/
def ι : FieldOpFreeAlgebra 𝓕 →ₐ[] FieldOpAlgebra 𝓕 where
toFun := (TwoSidedIdeal.span 𝓕.fieldOpIdealSet).ringCon.mk'
map_one' := by rfl
@ -453,12 +457,14 @@ lemma ι_eq_zero_iff_ι_bosonicProjF_fermonicProj_zero (x : FieldOpFreeAlgebra
-/
/-- An element of `FieldOpAlgebra` from a `FieldOp`. -/
/-- For a field specification `𝓕` and an element `φ` of `𝓕.FieldOp`, the element of
`𝓕.FieldOpAlgebra` given by `ι (ofFieldOpF φ)`. -/
def ofFieldOp (φ : 𝓕.FieldOp) : 𝓕.FieldOpAlgebra := ι (ofFieldOpF φ)
lemma ofFieldOp_eq_ι_ofFieldOpF (φ : 𝓕.FieldOp) : ofFieldOp φ = ι (ofFieldOpF φ) := rfl
/-- An element of `FieldOpAlgebra` from a list of `FieldOp`. -/
/-- For a field specification `𝓕` and a list `φs` of `𝓕.FieldOp`, the element of
`𝓕.FieldOpAlgebra` given by `ι (ofFieldOpListF φ)`. -/
def ofFieldOpList (φs : List 𝓕.FieldOp) : 𝓕.FieldOpAlgebra := ι (ofFieldOpListF φs)
lemma ofFieldOpList_eq_ι_ofFieldOpListF (φs : List 𝓕.FieldOp) :
@ -481,7 +487,8 @@ lemma ofFieldOpList_singleton (φ : 𝓕.FieldOp) :
ofFieldOpList [φ] = ofFieldOp φ := by
simp only [ofFieldOpList, ofFieldOp, ofFieldOpListF_singleton]
/-- An element of `FieldOpAlgebra` from a `CrAnFieldOp`. -/
/-- For a field specification `𝓕` and an element `φ` of `𝓕.CrAnFieldOp`, the element of
`𝓕.FieldOpAlgebra` given by `ι (ofCrAnOpF φ)`. -/
def ofCrAnOp (φ : 𝓕.CrAnFieldOp) : 𝓕.FieldOpAlgebra := ι (ofCrAnOpF φ)
lemma ofCrAnOp_eq_ι_ofCrAnOpF (φ : 𝓕.CrAnFieldOp) :
@ -493,7 +500,8 @@ lemma ofFieldOp_eq_sum (φ : 𝓕.FieldOp) :
simp only [map_sum]
rfl
/-- An element of `FieldOpAlgebra` from a list of `CrAnFieldOp`. -/
/-- For a field specification `𝓕` and a list `φs` of `𝓕.CrAnFieldOp`, the element of
`𝓕.FieldOpAlgebra` given by `ι (ofCrAnListF φ)`. -/
def ofCrAnList (φs : List 𝓕.CrAnFieldOp) : 𝓕.FieldOpAlgebra := ι (ofCrAnListF φs)
lemma ofCrAnList_eq_ι_ofCrAnListF (φs : List 𝓕.CrAnFieldOp) :
@ -515,7 +523,13 @@ lemma ofFieldOpList_eq_sum (φs : List 𝓕.FieldOp) :
simp only [map_sum]
rfl
/-- The annihilation part of a state. -/
remark notation_drop := "In doc-strings we will often drop explicit applications of `ofCrAnOp`,
`ofCrAnList`, `ofFieldOp`, and `ofFieldOpList`"
/-- For a field specification `𝓕`, and an element `φ` of `𝓕.FieldOp`, the
annihilation part of `𝓕.FieldOp` as an element of `𝓕.FieldOpAlgebra`.
If `φ` is an incoming asymptotic state this is zero by definition, otherwise
it is of the form `ofCrAnOp _`. -/
def anPart (φ : 𝓕.FieldOp) : 𝓕.FieldOpAlgebra := ι (anPartF φ)
lemma anPart_eq_ι_anPartF (φ : 𝓕.FieldOp) : anPart φ = ι (anPartF φ) := rfl
@ -536,7 +550,10 @@ lemma anPart_posAsymp (φ : (Σ f, 𝓕.AsymptoticLabel f) × (Fin 3 → )) :
anPart (FieldOp.outAsymp φ) = ofCrAnOp ⟨FieldOp.outAsymp φ, ()⟩ := by
simp [anPart, ofCrAnOp]
/-- The creation part of a state. -/
/-- For a field specification `𝓕`, and an element `φ` of `𝓕.FieldOp`, the
creation part of `𝓕.FieldOp` as an element of `𝓕.FieldOpAlgebra`.
If `φ` is an outgoing asymptotic state this is zero by definition, otherwise
it is of the form `ofCrAnOp _`. -/
def crPart (φ : 𝓕.FieldOp) : 𝓕.FieldOpAlgebra := ι (crPartF φ)
lemma crPart_eq_ι_crPartF (φ : 𝓕.FieldOp) : crPart φ = ι (crPartF φ) := rfl
@ -557,6 +574,12 @@ lemma crPart_posAsymp (φ : (Σ f, 𝓕.AsymptoticLabel f) × (Fin 3 → )) :
crPart (FieldOp.outAsymp φ) = 0 := by
simp [crPart]
/-- For field specification `𝓕`, and an element `φ` of `𝓕.FieldOp` the following relation holds:
`ofFieldOp φ = crPart φ + anPart φ`
That is, every field operator splits into its creation part plus its annihilation part.
-/
lemma ofFieldOp_eq_crPart_add_anPart (φ : 𝓕.FieldOp) :
ofFieldOp φ = crPart φ + anPart φ := by
rw [ofFieldOp, crPart, anPart, ofFieldOpF_eq_crPartF_add_anPartF]

View file

@ -384,8 +384,9 @@ lemma directSum_eq_bosonic_plus_fermionic
abel
/-- For a field statistic `𝓕`, the algebra `𝓕.FieldOpAlgebra` is graded by `FieldStatistic`.
Those `ofCrAnList φs` for which `φs` has `bosonic` statistics span one part of the grading,
whilst those where `φs` has `fermionic` statistics span the other part of the grading. -/
Those `ofCrAnList φs` for which `φs` has an overall `bosonic` statistic span `bosonic`
submodule, whilst those `ofCrAnList φs` for which `φs` has an overall `fermionic` statistic span
the `fermionic` submodule. -/
instance fieldOpAlgebraGrade : GradedAlgebra (A := 𝓕.FieldOpAlgebra) statSubmodule where
one_mem := by
simp only [statSubmodule]

View file

@ -88,7 +88,16 @@ lemma superCommuteRight_eq_of_equiv (a1 a2 : 𝓕.FieldOpFreeAlgebra) (h : a1
simp only [add_sub_cancel]
simp
/-- The super commutor on the `FieldOpAlgebra`. -/
/-- For a field specification `𝓕`, `superCommute` is the linear map
`FieldOpAlgebra 𝓕 →ₗ[] FieldOpAlgebra 𝓕 →ₗ[] FieldOpAlgebra 𝓕`
defined as the decent of `ι ∘ superCommuteF` in both arguments.
In particular for `φs` and `φs'` lists of `𝓕.CrAnFieldOp` in `FieldOpAlgebra 𝓕` the following
relation holds:
`superCommute φs φs' = φs * φs' - 𝓢(φs, φs') • φs' * φs`
The notation `[a, b]ₛ` is used for `superCommute a b`.
-/
noncomputable def superCommute : FieldOpAlgebra 𝓕 →ₗ[]
FieldOpAlgebra 𝓕 →ₗ[] FieldOpAlgebra 𝓕 where
toFun := Quotient.lift superCommuteRight superCommuteRight_eq_of_equiv

View file

@ -236,9 +236,10 @@ lemma directSum_eq_bosonic_plus_fermionic
conv_lhs => rw [hx, hy]
abel
/-- For a field statistic `𝓕`, the algebra `𝓕.FieldOpFreeAlgebra` is graded by `FieldStatistic`.
Those `ofCrAnListF φs` for which `φs` has `bosonic` statistics span one part of the grading,
whilst those where `φs` has `fermionic` statistics span the other part of the grading. -/
/-- For a field specification `𝓕`, the algebra `𝓕.FieldOpFreeAlgebra` is graded by `FieldStatistic`.
Those `ofCrAnListF φs` for which `φs` has an overall `bosonic` statistic span `bosonic`
submodule, whilst those `ofCrAnListF φs` for which `φs` has an overall `fermionic` statistic span
the `fermionic` submodule. -/
instance fieldOpFreeAlgebraGrade :
GradedAlgebra (A := 𝓕.FieldOpFreeAlgebra) statisticSubmodule where
one_mem := by