refactor: multiple goal proves
This commit is contained in:
parent
fe0e3c3684
commit
c89a7fd1ea
12 changed files with 277 additions and 320 deletions
|
@ -91,13 +91,9 @@ lemma iff_det_selfAdjoint (Λ : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ)
|
|||
toLin LorentzVector.stdBasis LorentzVector.stdBasis Λ ∘ toSelfAdjointMatrix.symm) x).1
|
||||
= det x.1 := by
|
||||
rw [LorentzGroup.mem_iff_norm]
|
||||
apply Iff.intro
|
||||
intro h x
|
||||
have h1 := congrArg ofReal $ h (toSelfAdjointMatrix.symm x)
|
||||
simpa [← det_eq_ηLin] using h1
|
||||
intro h x
|
||||
have h1 := h (toSelfAdjointMatrix x)
|
||||
simpa [det_eq_ηLin] using h1
|
||||
refine Iff.intro (fun h x => ?_) (fun h x => ?_)
|
||||
· simpa [← det_eq_ηLin] using congrArg ofReal $ h (toSelfAdjointMatrix.symm x)
|
||||
· simpa [det_eq_ηLin] using h (toSelfAdjointMatrix x)
|
||||
|
||||
/-- Given an element `M ∈ SL(2, ℂ)` the corresponding element of the Lorentz group. -/
|
||||
@[simps!]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue