refactor: Reorganize files
This commit is contained in:
parent
63c4cabdf4
commit
c993de36f6
16 changed files with 1408 additions and 1310 deletions
|
@ -3,7 +3,7 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.Koszul.OperatorMap
|
||||
import HepLean.PerturbationTheory.Wick.OperatorMap
|
||||
/-!
|
||||
|
||||
# Koszul signs and ordering for lists and algebras
|
||||
|
@ -100,7 +100,7 @@ structure Splitting {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
|
|||
𝓑p : I → (Σ i, f i)
|
||||
𝓧n : I → ℂ
|
||||
𝓧p : I → ℂ
|
||||
h𝓑 : ∀ i, ofListM f [i] 1 = ofList [𝓑n i] (𝓧n i) + ofList [𝓑p i] (𝓧p i)
|
||||
h𝓑 : ∀ i, ofListLift f [i] 1 = ofList [𝓑n i] (𝓧n i) + ofList [𝓑p i] (𝓧p i)
|
||||
h𝓑n : ∀ i j, le1 (𝓑n i) j
|
||||
h𝓑p : ∀ i j, le1 j (𝓑p i)
|
||||
|
||||
|
@ -114,7 +114,7 @@ def toCenterTerm {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
|
|||
| _ :: _, ⟨_, .cons (aux := aux') none c⟩, S => toCenterTerm f q le1 F ⟨aux', c⟩ S
|
||||
| a :: _, ⟨_, .cons (aux := aux') (some n) c⟩, S => toCenterTerm f q le1 F ⟨aux', c⟩ S *
|
||||
superCommuteCoef q [aux'.get n] (List.take (↑n) aux') •
|
||||
F (((superCommute fun i => q i.fst) (ofList [S.𝓑p a] (S.𝓧p a))) (ofListM f [aux'.get n] 1))
|
||||
F (((superCommute fun i => q i.fst) (ofList [S.𝓑p a] (S.𝓧p a))) (ofListLift f [aux'.get n] 1))
|
||||
|
||||
lemma toCenterTerm_none {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) {r : List I}
|
||||
|
@ -147,105 +147,16 @@ lemma toCenterTerm_center {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
|
|||
refine Subalgebra.mul_mem (Subalgebra.center ℂ A) ?hx ?hy
|
||||
exact toCenterTerm_center f q le1 F ⟨aux', c⟩ S
|
||||
apply Subalgebra.smul_mem
|
||||
rw [ofListM_expand]
|
||||
rw [ofListLift_expand]
|
||||
rw [map_sum, map_sum]
|
||||
refine Subalgebra.sum_mem (Subalgebra.center ℂ A) ?hy.hx.h
|
||||
intro x _
|
||||
simp only [CreatAnnilateSect.toList]
|
||||
simp only [CreateAnnilateSect.toList]
|
||||
rw [ofList_singleton]
|
||||
exact OperatorMap.superCommute_ofList_singleton_ι_center (q := fun i => q i.1)
|
||||
(le1 := le1) F (S.𝓑p a) ⟨aux'[↑n], x.head⟩
|
||||
|
||||
end Contractions
|
||||
|
||||
lemma static_wick_nil {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2)
|
||||
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
|
||||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F]
|
||||
(S : Contractions.Splitting f le1) :
|
||||
F (ofListM f [] 1) = ∑ c : Contractions [],
|
||||
c.toCenterTerm f q le1 F S *
|
||||
F (koszulOrder le1 (fun i => q i.fst) (ofListM f c.normalize 1)) := by
|
||||
rw [← Contractions.nilEquiv.symm.sum_comp]
|
||||
simp only [Finset.univ_unique, PUnit.default_eq_unit, Contractions.nilEquiv, Equiv.coe_fn_symm_mk,
|
||||
Finset.sum_const, Finset.card_singleton, one_smul]
|
||||
dsimp [Contractions.normalize, Contractions.toCenterTerm]
|
||||
simp [ofListM_empty]
|
||||
|
||||
lemma static_wick_cons {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2)
|
||||
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
|
||||
[IsTrans ((i : I) × f i) le1] [IsTotal ((i : I) × f i) le1]
|
||||
{A : Type} [Semiring A] [Algebra ℂ A] (r : List I) (a : I)
|
||||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F]
|
||||
(S : Contractions.Splitting f le1)
|
||||
(ih : F (ofListM f r 1) =
|
||||
∑ c : Contractions r, c.toCenterTerm f q le1 F S * F (koszulOrder le1 (fun i => q i.fst)
|
||||
(ofListM f c.normalize 1))) :
|
||||
F (ofListM f (a :: r) 1) = ∑ c : Contractions (a :: r),
|
||||
c.toCenterTerm f q le1 F S *
|
||||
F (koszulOrder le1 (fun i => q i.fst) (ofListM f c.normalize 1)) := by
|
||||
rw [ofListM_cons_eq_ofListM, map_mul, ih, Finset.mul_sum,
|
||||
← Contractions.consEquiv.symm.sum_comp]
|
||||
erw [Finset.sum_sigma]
|
||||
congr
|
||||
funext c
|
||||
have hb := S.h𝓑 a
|
||||
rw [← mul_assoc]
|
||||
have hi := c.toCenterTerm_center f q le1 F S
|
||||
rw [Subalgebra.mem_center_iff] at hi
|
||||
rw [hi, mul_assoc, ← map_mul, hb, add_mul, map_add]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
lhs
|
||||
rw [ofList_eq_smul_one]
|
||||
rw [Algebra.smul_mul_assoc]
|
||||
rw [ofList_singleton]
|
||||
rw [mul_koszulOrder_le]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
lhs
|
||||
rw [← map_smul, ← Algebra.smul_mul_assoc]
|
||||
rw [← ofList_singleton, ← ofList_eq_smul_one]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
rhs
|
||||
rw [ofList_eq_smul_one, Algebra.smul_mul_assoc, map_smul]
|
||||
rw [le_all_mul_koszulOrder_ofListM_expand]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
rhs
|
||||
rw [smul_add, Finset.smul_sum]
|
||||
rw [← map_smul, ← map_smul, ← Algebra.smul_mul_assoc, ← ofList_eq_smul_one]
|
||||
rhs
|
||||
rhs
|
||||
intro n
|
||||
rw [← Algebra.smul_mul_assoc, smul_comm, ← map_smul, ← LinearMap.map_smul₂,
|
||||
← ofList_eq_smul_one]
|
||||
rw [← add_assoc, ← map_add, ← map_add, ← add_mul, ← hb, ← ofListM_cons_eq_ofListM, mul_add]
|
||||
rw [Fintype.sum_option]
|
||||
congr 1
|
||||
rw [Finset.mul_sum]
|
||||
congr
|
||||
funext n
|
||||
rw [← mul_assoc]
|
||||
rfl
|
||||
exact S.h𝓑p a
|
||||
exact S.h𝓑n a
|
||||
|
||||
theorem static_wick_theorem {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2)
|
||||
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1] [IsTrans ((i : I) × f i) le1]
|
||||
[IsTotal ((i : I) × f i) le1]
|
||||
{A : Type} [Semiring A] [Algebra ℂ A] (r : List I)
|
||||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F]
|
||||
(S : Contractions.Splitting f le1) :
|
||||
F (ofListM f r 1) = ∑ c : Contractions r, c.toCenterTerm f q le1 F S *
|
||||
F (koszulOrder le1 (fun i => q i.fst) (ofListM f c.normalize 1)) := by
|
||||
induction r with
|
||||
| nil => exact static_wick_nil q le1 F S
|
||||
| cons a r ih => exact static_wick_cons q le1 r a F S ih
|
||||
|
||||
end
|
||||
end Wick
|
|
@ -3,147 +3,32 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.Koszul.Grade
|
||||
import HepLean.PerturbationTheory.Wick.Signs.StaticWickCoef
|
||||
/-!
|
||||
|
||||
# Koszul signs and ordering for lists and algebras
|
||||
# Create and annihilate sections (of bundles)
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
open HepLean.List
|
||||
|
||||
noncomputable section
|
||||
|
||||
def ofList {I : Type} (l : List I) (x : ℂ) : FreeAlgebra ℂ I :=
|
||||
FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm (MonoidAlgebra.single l x)
|
||||
|
||||
lemma ofList_pair {I : Type} (l r : List I) (x y : ℂ) :
|
||||
ofList (l ++ r) (x * y) = ofList l x * ofList r y := by
|
||||
simp only [ofList, ← map_mul, MonoidAlgebra.single_mul_single, EmbeddingLike.apply_eq_iff_eq]
|
||||
rfl
|
||||
|
||||
lemma ofList_triple {I : Type} (la lb lc : List I) (xa xb xc : ℂ) :
|
||||
ofList (la ++ lb ++ lc) (xa * xb * xc) = ofList la xa * ofList lb xb * ofList lc xc := by
|
||||
rw [ofList_pair, ofList_pair]
|
||||
|
||||
lemma ofList_triple_assoc {I : Type} (la lb lc : List I) (xa xb xc : ℂ) :
|
||||
ofList (la ++ (lb ++ lc)) (xa * (xb * xc)) = ofList la xa * ofList lb xb * ofList lc xc := by
|
||||
rw [ofList_pair, ofList_pair]
|
||||
exact Eq.symm (mul_assoc (ofList la xa) (ofList lb xb) (ofList lc xc))
|
||||
|
||||
lemma ofList_cons_eq_ofList {I : Type} (l : List I) (i : I) (x : ℂ) :
|
||||
ofList (i :: l) x = ofList [i] 1 * ofList l x := by
|
||||
simp only [ofList, ← map_mul, MonoidAlgebra.single_mul_single, one_mul,
|
||||
EmbeddingLike.apply_eq_iff_eq]
|
||||
rfl
|
||||
|
||||
lemma ofList_singleton {I : Type} (i : I) :
|
||||
ofList [i] 1 = FreeAlgebra.ι ℂ i := by
|
||||
simp only [ofList, FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.of_apply,
|
||||
MonoidAlgebra.single, AlgEquiv.ofAlgHom_symm_apply, MonoidAlgebra.lift_single, one_smul]
|
||||
rfl
|
||||
|
||||
lemma ofList_eq_smul_one {I : Type} (l : List I) (x : ℂ) :
|
||||
ofList l x = x • ofList l 1 := by
|
||||
simp only [ofList]
|
||||
rw [← map_smul]
|
||||
simp
|
||||
|
||||
lemma ofList_empty {I : Type} : ofList [] 1 = (1 : FreeAlgebra ℂ I) := by
|
||||
simp only [ofList, EmbeddingLike.map_eq_one_iff]
|
||||
rfl
|
||||
|
||||
lemma ofList_empty' {I : Type} : ofList [] x = x • (1 : FreeAlgebra ℂ I) := by
|
||||
rw [ofList_eq_smul_one, ofList_empty]
|
||||
|
||||
lemma koszulOrder_ofList {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2)
|
||||
(l : List I) (x : ℂ) :
|
||||
koszulOrder r q (ofList l x) = (koszulSign r q l) • ofList (List.insertionSort r l) x := by
|
||||
rw [ofList]
|
||||
rw [koszulOrder_single]
|
||||
change ofList (List.insertionSort r l) _ = _
|
||||
rw [ofList_eq_smul_one]
|
||||
conv_rhs => rw [ofList_eq_smul_one]
|
||||
rw [smul_smul]
|
||||
|
||||
lemma ofList_insertionSort_eq_koszulOrder {I : Type} (r : I → I → Prop) [DecidableRel r]
|
||||
(q : I → Fin 2) (l : List I) (x : ℂ) :
|
||||
ofList (List.insertionSort r l) x = (koszulSign r q l) • koszulOrder r q (ofList l x) := by
|
||||
rw [koszulOrder_ofList]
|
||||
rw [smul_smul]
|
||||
rw [koszulSign_mul_self]
|
||||
simp
|
||||
|
||||
def freeAlgebraMap {I : Type} (f : I → Type) [∀ i, Fintype (f i)] :
|
||||
FreeAlgebra ℂ I →ₐ[ℂ] FreeAlgebra ℂ (Σ i, f i) :=
|
||||
FreeAlgebra.lift ℂ fun i => ∑ (j : f i), FreeAlgebra.ι ℂ ⟨i, j⟩
|
||||
|
||||
lemma freeAlgebraMap_ι {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (i : I) :
|
||||
freeAlgebraMap f (FreeAlgebra.ι ℂ i) = ∑ (b : f i), FreeAlgebra.ι ℂ ⟨i, b⟩ := by
|
||||
simp [freeAlgebraMap]
|
||||
|
||||
def ofListM {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (l : List I) (x : ℂ) :
|
||||
FreeAlgebra ℂ (Σ i, f i) :=
|
||||
freeAlgebraMap f (ofList l x)
|
||||
|
||||
lemma ofListM_empty {I : Type} (f : I → Type) [∀ i, Fintype (f i)] :
|
||||
ofListM f [] 1 = 1 := by
|
||||
simp only [ofListM, EmbeddingLike.map_eq_one_iff]
|
||||
rw [ofList_empty]
|
||||
exact map_one (freeAlgebraMap f)
|
||||
|
||||
lemma ofListM_empty_smul {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (x : ℂ) :
|
||||
ofListM f [] x = x • 1 := by
|
||||
simp only [ofListM, EmbeddingLike.map_eq_one_iff]
|
||||
rw [ofList_eq_smul_one]
|
||||
rw [ofList_empty]
|
||||
simp
|
||||
|
||||
lemma ofListM_cons {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (i : I) (r : List I) (x : ℂ) :
|
||||
ofListM f (i :: r) x = (∑ j : f i, FreeAlgebra.ι ℂ ⟨i, j⟩) * (ofListM f r x) := by
|
||||
rw [ofListM, ofList_cons_eq_ofList, ofList_singleton, map_mul]
|
||||
conv_lhs => lhs; rw [freeAlgebraMap]
|
||||
rw [ofListM]
|
||||
simp
|
||||
|
||||
lemma ofListM_singleton {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (i : I) (x : ℂ) :
|
||||
ofListM f [i] x = ∑ j : f i, x • FreeAlgebra.ι ℂ ⟨i, j⟩ := by
|
||||
simp only [ofListM]
|
||||
rw [ofList_eq_smul_one, ofList_singleton, map_smul]
|
||||
rw [freeAlgebraMap_ι]
|
||||
rw [Finset.smul_sum]
|
||||
|
||||
lemma ofListM_singleton_one {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (i : I) :
|
||||
ofListM f [i] 1 = ∑ j : f i, FreeAlgebra.ι ℂ ⟨i, j⟩ := by
|
||||
simp only [ofListM]
|
||||
rw [ofList_eq_smul_one, ofList_singleton, map_smul]
|
||||
rw [freeAlgebraMap_ι]
|
||||
rw [Finset.smul_sum]
|
||||
simp
|
||||
|
||||
lemma ofListM_cons_eq_ofListM {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (i : I)
|
||||
(r : List I) (x : ℂ) :
|
||||
ofListM f (i :: r) x = ofListM f [i] 1 * ofListM f r x := by
|
||||
rw [ofListM_cons, ofListM_singleton]
|
||||
simp only [one_smul]
|
||||
|
||||
def CreatAnnilateSect {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (l : List I) : Type :=
|
||||
def CreateAnnilateSect {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (l : List I) : Type :=
|
||||
Π i, f (l.get i)
|
||||
|
||||
namespace CreatAnnilateSect
|
||||
namespace CreateAnnilateSect
|
||||
|
||||
variable {I : Type} {f : I → Type} [∀ i, Fintype (f i)] {l : List I} (a : CreatAnnilateSect f l)
|
||||
variable {I : Type} {f : I → Type} [∀ i, Fintype (f i)] {l : List I} (a : CreateAnnilateSect f l)
|
||||
|
||||
instance fintype : Fintype (CreatAnnilateSect f l) := Pi.fintype
|
||||
instance fintype : Fintype (CreateAnnilateSect f l) := Pi.fintype
|
||||
|
||||
def tail : {l : List I} → (a : CreatAnnilateSect f l) → CreatAnnilateSect f l.tail
|
||||
def tail : {l : List I} → (a : CreateAnnilateSect f l) → CreateAnnilateSect f l.tail
|
||||
| [], a => a
|
||||
| _ :: _, a => fun i => a (Fin.succ i)
|
||||
|
||||
def head {i : I} (a : CreatAnnilateSect f (i :: l)) : f i := a ⟨0, Nat.zero_lt_succ l.length⟩
|
||||
def head {i : I} (a : CreateAnnilateSect f (i :: l)) : f i := a ⟨0, Nat.zero_lt_succ l.length⟩
|
||||
|
||||
def toList : {l : List I} → (a : CreatAnnilateSect f l) → List (Σ i, f i)
|
||||
def toList : {l : List I} → (a : CreateAnnilateSect f l) → List (Σ i, f i)
|
||||
| [], _ => []
|
||||
| i :: _, a => ⟨i, a.head⟩ :: toList a.tail
|
||||
|
||||
|
@ -155,16 +40,16 @@ lemma toList_length : (toList a).length = l.length := by
|
|||
simp only [toList, List.length_cons, Fin.zero_eta]
|
||||
rw [ih]
|
||||
|
||||
lemma toList_tail : {l : List I} → (a : CreatAnnilateSect f l) → toList a.tail = (toList a).tail
|
||||
lemma toList_tail : {l : List I} → (a : CreateAnnilateSect f l) → toList a.tail = (toList a).tail
|
||||
| [], _ => rfl
|
||||
| i :: l, a => by
|
||||
simp [toList]
|
||||
|
||||
lemma toList_cons {i : I} (a : CreatAnnilateSect f (i :: l)) :
|
||||
lemma toList_cons {i : I} (a : CreateAnnilateSect f (i :: l)) :
|
||||
(toList a) = ⟨i, a.head⟩ :: toList a.tail := by
|
||||
rfl
|
||||
|
||||
lemma toList_get (a : CreatAnnilateSect f l) :
|
||||
lemma toList_get (a : CreateAnnilateSect f l) :
|
||||
(toList a).get = (fun i => ⟨l.get i, a i⟩) ∘ Fin.cast (by simp) := by
|
||||
induction l with
|
||||
| nil =>
|
||||
|
@ -206,7 +91,7 @@ lemma toList_grade (q : I → Fin 2) :
|
|||
|
||||
@[simp]
|
||||
lemma toList_grade_take {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) : (r : List I) → (a : CreatAnnilateSect f r) → (n : ℕ) →
|
||||
(q : I → Fin 2) : (r : List I) → (a : CreateAnnilateSect f r) → (n : ℕ) →
|
||||
grade (fun i => q i.fst) (List.take n a.toList) = grade q (List.take n r)
|
||||
| [], _, _ => by
|
||||
simp [toList]
|
||||
|
@ -217,12 +102,12 @@ lemma toList_grade_take {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
|||
rw [toList_grade_take q r a.tail n]
|
||||
|
||||
def extractEquiv {I : Type} {f : I → Type} [(i : I) → Fintype (f i)] {l : List I}
|
||||
(n : Fin l.length) : CreatAnnilateSect f l ≃
|
||||
f (l.get n) × CreatAnnilateSect f (l.eraseIdx n) := by
|
||||
(n : Fin l.length) : CreateAnnilateSect f l ≃
|
||||
f (l.get n) × CreateAnnilateSect f (l.eraseIdx n) := by
|
||||
match l with
|
||||
| [] => exact Fin.elim0 n
|
||||
| l0 :: l =>
|
||||
let e1 : CreatAnnilateSect f ((l0 :: l).eraseIdx n) ≃ Π i, f ((l0 :: l).get (n.succAbove i)) :=
|
||||
let e1 : CreateAnnilateSect f ((l0 :: l).eraseIdx n) ≃ Π i, f ((l0 :: l).get (n.succAbove i)) :=
|
||||
Equiv.piCongr (Fin.castOrderIso (by rw [eraseIdx_cons_length])).toEquiv
|
||||
fun x => Equiv.cast (congrArg f (by
|
||||
rw [HepLean.List.eraseIdx_get]
|
||||
|
@ -252,15 +137,15 @@ def extractEquiv {I : Type} {f : I → Type} [(i : I) → Fintype (f i)] {l : Li
|
|||
exact (Fin.insertNthEquiv _ _).symm.trans (Equiv.prodCongr (Equiv.refl _) e1.symm)
|
||||
|
||||
lemma extractEquiv_symm_toList_get_same {I : Type} {f : I → Type} [(i : I) → Fintype (f i)]
|
||||
{l : List I} (n : Fin l.length) (a0 : f (l.get n)) (a : CreatAnnilateSect f (l.eraseIdx n)) :
|
||||
{l : List I} (n : Fin l.length) (a0 : f (l.get n)) (a : CreateAnnilateSect f (l.eraseIdx n)) :
|
||||
((extractEquiv n).symm (a0, a)).toList[n] = ⟨l[n], a0⟩ := by
|
||||
match l with
|
||||
| [] => exact Fin.elim0 n
|
||||
| l0 :: l =>
|
||||
trans (((CreatAnnilateSect.extractEquiv n).symm (a0, a)).toList).get (Fin.cast (by simp) n)
|
||||
trans (((CreateAnnilateSect.extractEquiv n).symm (a0, a)).toList).get (Fin.cast (by simp) n)
|
||||
· simp only [List.length_cons, List.get_eq_getElem, Fin.coe_cast]
|
||||
rfl
|
||||
rw [CreatAnnilateSect.toList_get]
|
||||
rw [CreateAnnilateSect.toList_get]
|
||||
simp only [List.get_eq_getElem, List.length_cons, extractEquiv, RelIso.coe_fn_toEquiv,
|
||||
Fin.castOrderIso_apply, Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.prodCongr_symm,
|
||||
Equiv.refl_symm, Equiv.prodCongr_apply, Equiv.coe_refl, Prod.map_apply, id_eq,
|
||||
|
@ -270,11 +155,11 @@ lemma extractEquiv_symm_toList_get_same {I : Type} {f : I → Type} [(i : I) →
|
|||
erw [Fin.insertNthEquiv_apply]
|
||||
simp only [Fin.insertNth_apply_same]
|
||||
|
||||
def eraseIdx (n : Fin l.length) : CreatAnnilateSect f (l.eraseIdx n) :=
|
||||
def eraseIdx (n : Fin l.length) : CreateAnnilateSect f (l.eraseIdx n) :=
|
||||
(extractEquiv n a).2
|
||||
|
||||
@[simp]
|
||||
lemma eraseIdx_zero_tail {i : I} {l : List I} (a : CreatAnnilateSect f (i :: l)) :
|
||||
lemma eraseIdx_zero_tail {i : I} {l : List I} (a : CreateAnnilateSect f (i :: l)) :
|
||||
(eraseIdx a (@OfNat.ofNat (Fin (l.length + 1)) 0 Fin.instOfNat : Fin (l.length + 1))) =
|
||||
a.tail := by
|
||||
simp only [List.length_cons, Fin.val_zero, List.eraseIdx_cons_zero, eraseIdx, List.get_eq_getElem,
|
||||
|
@ -284,7 +169,7 @@ lemma eraseIdx_zero_tail {i : I} {l : List I} (a : CreatAnnilateSect f (i :: l))
|
|||
rfl
|
||||
|
||||
lemma eraseIdx_succ_head {i : I} {l : List I} (n : ℕ) (hn : n + 1 < (i :: l).length)
|
||||
(a : CreatAnnilateSect f (i :: l)) : (eraseIdx a ⟨n + 1, hn⟩).head = a.head := by
|
||||
(a : CreateAnnilateSect f (i :: l)) : (eraseIdx a ⟨n + 1, hn⟩).head = a.head := by
|
||||
rw [eraseIdx, extractEquiv]
|
||||
simp only [List.length_cons, List.get_eq_getElem, List.getElem_cons_succ, List.eraseIdx_cons_succ,
|
||||
RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, Equiv.trans_apply, Equiv.prodCongr_apply,
|
||||
|
@ -305,7 +190,7 @@ lemma eraseIdx_succ_head {i : I} {l : List I} (n : ℕ) (hn : n + 1 < (i :: l).l
|
|||
simp [Fin.ext_iff]
|
||||
|
||||
lemma eraseIdx_succ_tail {i : I} {l : List I} (n : ℕ) (hn : n + 1 < (i :: l).length)
|
||||
(a : CreatAnnilateSect f (i :: l)) :
|
||||
(a : CreateAnnilateSect f (i :: l)) :
|
||||
(eraseIdx a ⟨n + 1, hn⟩).tail = eraseIdx a.tail ⟨n, Nat.succ_lt_succ_iff.mp hn⟩ := by
|
||||
match l with
|
||||
| [] =>
|
||||
|
@ -365,7 +250,7 @@ lemma eraseIdx_succ_tail {i : I} {l : List I} (n : ℕ) (hn : n + 1 < (i :: l).l
|
|||
omega
|
||||
next h_1 => simp_all only [not_lt, Fin.val_succ, Fin.coe_cast]
|
||||
|
||||
lemma eraseIdx_toList : {l : List I} → {n : Fin l.length} → (a : CreatAnnilateSect f l) →
|
||||
lemma eraseIdx_toList : {l : List I} → {n : Fin l.length} → (a : CreateAnnilateSect f l) →
|
||||
(eraseIdx a n).toList = a.toList.eraseIdx n
|
||||
| [], n, _ => Fin.elim0 n
|
||||
| r0 :: r, ⟨0, h⟩, a => by
|
||||
|
@ -379,7 +264,7 @@ lemma eraseIdx_toList : {l : List I} → {n : Fin l.length} → (a : CreatAnnila
|
|||
rw [eraseIdx_succ_tail]
|
||||
|
||||
lemma extractEquiv_symm_eraseIdx {I : Type} {f : I → Type} [(i : I) → Fintype (f i)]
|
||||
{l : List I} (n : Fin l.length) (a0 : f l[↑n]) (a : CreatAnnilateSect f (l.eraseIdx n)) :
|
||||
{l : List I} (n : Fin l.length) (a0 : f l[↑n]) (a : CreateAnnilateSect f (l.eraseIdx n)) :
|
||||
((extractEquiv n).symm (a0, a)).eraseIdx n = a := by
|
||||
match l with
|
||||
| [] => exact Fin.elim0 n
|
||||
|
@ -389,7 +274,7 @@ lemma extractEquiv_symm_eraseIdx {I : Type} {f : I → Type} [(i : I) → Fintyp
|
|||
|
||||
lemma toList_koszulSignInsert {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
(l : List I) (a : CreatAnnilateSect f l) (x : (i : I) × f i) :
|
||||
(l : List I) (a : CreateAnnilateSect f l) (x : (i : I) × f i) :
|
||||
koszulSignInsert (fun i j => le1 i.fst j.fst) (fun i => q i.fst) x a.toList =
|
||||
koszulSignInsert le1 q x.1 l := by
|
||||
induction l with
|
||||
|
@ -400,7 +285,7 @@ lemma toList_koszulSignInsert {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
|||
|
||||
lemma toList_koszulSign {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
(l : List I) (a : CreatAnnilateSect f l) :
|
||||
(l : List I) (a : CreateAnnilateSect f l) :
|
||||
koszulSign (fun i j => le1 i.fst j.fst) (fun i => q i.fst) a.toList =
|
||||
koszulSign le1 q l := by
|
||||
induction l with
|
||||
|
@ -413,7 +298,7 @@ lemma toList_koszulSign {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
|||
|
||||
lemma insertionSortEquiv_toList {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(le1 : I → I → Prop) [DecidableRel le1](l : List I)
|
||||
(a : CreatAnnilateSect f l) :
|
||||
(a : CreateAnnilateSect f l) :
|
||||
insertionSortEquiv (fun i j => le1 i.fst j.fst) a.toList =
|
||||
(Fin.castOrderIso (by simp)).toEquiv.trans ((insertionSortEquiv le1 l).trans
|
||||
(Fin.castOrderIso (by simp)).toEquiv) := by
|
||||
|
@ -466,7 +351,7 @@ lemma insertionSortEquiv_toList {I : Type} {f : I → Type} [∀ i, Fintype (f i
|
|||
have h3 : (List.insertionSort le1 (List.map (fun i => i.1) a.tail.toList)) =
|
||||
List.insertionSort le1 l := by
|
||||
congr
|
||||
have h3' (l : List I) (a : CreatAnnilateSect f l) :
|
||||
have h3' (l : List I) (a : CreateAnnilateSect f l) :
|
||||
List.map (fun i => i.1) a.toList = l := by
|
||||
induction l with
|
||||
| nil => rfl
|
||||
|
@ -481,14 +366,14 @@ lemma insertionSortEquiv_toList {I : Type} {f : I → Type} [∀ i, Fintype (f i
|
|||
Fin.cast_trans, Fin.cast_eq_self, Fin.coe_cast]
|
||||
rfl
|
||||
|
||||
def sort (le1 : I → I → Prop) [DecidableRel le1] : CreatAnnilateSect f (List.insertionSort le1 l) :=
|
||||
def sort (le1 : I → I → Prop) [DecidableRel le1] : CreateAnnilateSect f (List.insertionSort le1 l) :=
|
||||
Equiv.piCongr (HepLean.List.insertionSortEquiv le1 l) (fun i => (Equiv.cast (by
|
||||
congr 1
|
||||
rw [← HepLean.List.insertionSortEquiv_get]
|
||||
simp))) a
|
||||
|
||||
lemma sort_toList {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(le1 : I → I → Prop) [DecidableRel le1] (l : List I) (a : CreatAnnilateSect f l) :
|
||||
(le1 : I → I → Prop) [DecidableRel le1] (l : List I) (a : CreateAnnilateSect f l) :
|
||||
(a.sort le1).toList = List.insertionSort (fun i j => le1 i.fst j.fst) a.toList := by
|
||||
let l1 := List.insertionSort (fun i j => le1 i.fst j.fst) a.toList
|
||||
let l2 := (a.sort le1).toList
|
||||
|
@ -516,66 +401,6 @@ lemma sort_toList {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
|||
rw [hget]
|
||||
simp
|
||||
|
||||
end CreatAnnilateSect
|
||||
end CreateAnnilateSect
|
||||
|
||||
lemma ofListM_expand {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (x : ℂ) :
|
||||
(l : List I) → ofListM f l x = ∑ (a : CreatAnnilateSect f l), ofList a.toList x
|
||||
| [] => by
|
||||
simp only [ofListM, CreatAnnilateSect, List.length_nil, List.get_eq_getElem, Finset.univ_unique,
|
||||
CreatAnnilateSect.toList, Finset.sum_const, Finset.card_singleton, one_smul]
|
||||
rw [ofList_eq_smul_one, map_smul, ofList_empty, ofList_eq_smul_one, ofList_empty, map_one]
|
||||
| i :: l => by
|
||||
rw [ofListM_cons, ofListM_expand f x l]
|
||||
conv_rhs => rw [← (CreatAnnilateSect.extractEquiv
|
||||
⟨0, by exact Nat.zero_lt_succ l.length⟩).symm.sum_comp (α := FreeAlgebra ℂ _)]
|
||||
erw [Finset.sum_product]
|
||||
rw [Finset.sum_mul]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
intro n
|
||||
rw [Finset.mul_sum]
|
||||
congr
|
||||
funext j
|
||||
congr
|
||||
funext n
|
||||
rw [← ofList_singleton, ← ofList_pair, one_mul]
|
||||
rfl
|
||||
|
||||
lemma koszulOrder_ofListM {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
(l : List I) (x : ℂ) : koszulOrder (fun i j => le1 i.1 j.1) (fun i => q i.fst) (ofListM f l x) =
|
||||
freeAlgebraMap f (koszulOrder le1 q (ofList l x)) := by
|
||||
rw [koszulOrder_ofList]
|
||||
rw [map_smul]
|
||||
change _ = _ • ofListM _ _ _
|
||||
rw [ofListM_expand]
|
||||
rw [map_sum]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
intro a
|
||||
rw [koszulOrder_ofList]
|
||||
rw [CreatAnnilateSect.toList_koszulSign]
|
||||
rw [← Finset.smul_sum]
|
||||
apply congrArg
|
||||
conv_lhs =>
|
||||
rhs
|
||||
intro n
|
||||
rw [← CreatAnnilateSect.sort_toList]
|
||||
rw [ofListM_expand]
|
||||
refine Fintype.sum_equiv
|
||||
((HepLean.List.insertionSortEquiv le1 l).piCongr fun i => Equiv.cast ?_) _ _ ?_
|
||||
congr 1
|
||||
· rw [← HepLean.List.insertionSortEquiv_get]
|
||||
simp
|
||||
· intro x
|
||||
rfl
|
||||
|
||||
lemma koszulOrder_ofListM_eq_ofListM {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
(l : List I) (x : ℂ) : koszulOrder (fun i j => le1 i.1 j.1) (fun i => q i.fst) (ofListM f l x) =
|
||||
koszulSign le1 q l • ofListM f (List.insertionSort le1 l) x := by
|
||||
rw [koszulOrder_ofListM, koszulOrder_ofList, map_smul]
|
||||
rfl
|
||||
|
||||
end
|
||||
end Wick
|
|
@ -1,636 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Mathematics.List
|
||||
import HepLean.PerturbationTheory.Wick.Koszul.Order
|
||||
/-!
|
||||
|
||||
# Koszul signs and ordering for lists and algebras
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
open HepLean.List
|
||||
|
||||
def grade {I : Type} (q : I → Fin 2) : (l : List I) → Fin 2
|
||||
| [] => 0
|
||||
| a :: l => if q a = grade q l then 0 else 1
|
||||
|
||||
@[simp]
|
||||
lemma grade_freeMonoid {I : Type} (q : I → Fin 2) (i : I) : grade q (FreeMonoid.of i) = q i := by
|
||||
simp only [grade, Fin.isValue]
|
||||
have ha (a : Fin 2) : (if a = 0 then 0 else 1) = a := by
|
||||
fin_cases a <;> rfl
|
||||
rw [ha]
|
||||
|
||||
@[simp]
|
||||
lemma grade_empty {I : Type} (q : I → Fin 2) : grade q [] = 0 := by
|
||||
simp [grade]
|
||||
|
||||
@[simp]
|
||||
lemma grade_append {I : Type} (q : I → Fin 2) (l r : List I) :
|
||||
grade q (l ++ r) = if grade q l = grade q r then 0 else 1 := by
|
||||
induction l with
|
||||
| nil =>
|
||||
simp only [List.nil_append, grade_empty, Fin.isValue]
|
||||
have ha (a : Fin 2) : (if 0 = a then 0 else 1) = a := by
|
||||
fin_cases a <;> rfl
|
||||
exact Eq.symm (Fin.eq_of_val_eq (congrArg Fin.val (ha (grade q r))))
|
||||
| cons a l ih =>
|
||||
simp only [grade, List.append_eq, Fin.isValue]
|
||||
erw [ih]
|
||||
have hab (a b c : Fin 2) : (if a = if b = c then 0 else 1 then (0 : Fin 2) else 1) =
|
||||
if (if a = b then 0 else 1) = c then 0 else 1 := by
|
||||
fin_cases a <;> fin_cases b <;> fin_cases c <;> rfl
|
||||
exact hab (q a) (grade q l) (grade q r)
|
||||
|
||||
lemma grade_orderedInsert {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
(l : List I) (i : I) : grade q (List.orderedInsert le1 i l) = grade q (i :: l) := by
|
||||
induction l with
|
||||
| nil => simp
|
||||
| cons j l ih =>
|
||||
simp only [List.orderedInsert]
|
||||
by_cases hij : le1 i j
|
||||
· simp [hij]
|
||||
· simp only [hij, ↓reduceIte]
|
||||
rw [grade]
|
||||
rw [ih]
|
||||
simp only [grade, Fin.isValue]
|
||||
have h1 (a b c : Fin 2) : (if a = if b = c then 0 else 1 then (0 : Fin 2) else 1) =
|
||||
if b = if a = c then 0 else 1 then 0 else 1 := by
|
||||
fin_cases a <;> fin_cases b <;> fin_cases c <;> rfl
|
||||
exact h1 _ _ _
|
||||
|
||||
@[simp]
|
||||
lemma grade_insertionSort {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
(l : List I) : grade q (List.insertionSort le1 l) = grade q l := by
|
||||
induction l with
|
||||
| nil => simp
|
||||
| cons j l ih =>
|
||||
simp only [List.insertionSort, grade, Fin.isValue]
|
||||
rw [grade_orderedInsert]
|
||||
simp only [grade, Fin.isValue]
|
||||
rw [ih]
|
||||
|
||||
lemma grade_count {I : Type} (q : I → Fin 2) (l : List I) :
|
||||
grade q l = if Nat.mod (List.countP (fun i => decide (q i = 1)) l) 2 = 0 then 0 else 1 := by
|
||||
induction l with
|
||||
| nil => simp
|
||||
| cons r0 r ih =>
|
||||
simp only [grade, Fin.isValue]
|
||||
rw [List.countP_cons]
|
||||
simp only [Fin.isValue, decide_eq_true_eq]
|
||||
rw [ih]
|
||||
by_cases h: q r0 = 1
|
||||
· simp only [h, Fin.isValue, ↓reduceIte]
|
||||
split
|
||||
next h1 =>
|
||||
simp_all only [Fin.isValue, ↓reduceIte, one_ne_zero]
|
||||
split
|
||||
next h2 =>
|
||||
simp_all only [Fin.isValue, one_ne_zero]
|
||||
have ha (a : ℕ) (ha : a % 2 = 0) : (a + 1) % 2 ≠ 0 := by
|
||||
omega
|
||||
exact ha (List.countP (fun i => decide (q i = 1)) r) h1 h2
|
||||
next h2 => simp_all only [Fin.isValue]
|
||||
next h1 =>
|
||||
simp_all only [Fin.isValue, ↓reduceIte]
|
||||
split
|
||||
next h2 => simp_all only [Fin.isValue]
|
||||
next h2 =>
|
||||
simp_all only [Fin.isValue, zero_ne_one]
|
||||
have ha (a : ℕ) (ha : ¬ a % 2 = 0) : (a + 1) % 2 = 0 := by
|
||||
omega
|
||||
exact h2 (ha (List.countP (fun i => decide (q i = 1)) r) h1)
|
||||
· have h0 : q r0 = 0 := by omega
|
||||
simp only [h0, Fin.isValue, zero_ne_one, ↓reduceIte, add_zero]
|
||||
by_cases hn : (List.countP (fun i => decide (q i = 1)) r).mod 2 = 0
|
||||
· simp [hn]
|
||||
· simp [hn]
|
||||
|
||||
lemma grade_perm {I : Type} (q : I → Fin 2) {l l' : List I} (h : l.Perm l') :
|
||||
grade q l = grade q l' := by
|
||||
rw [grade_count, grade_count, h.countP_eq]
|
||||
|
||||
def superCommuteCoef {I : Type} (q : I → Fin 2) (la lb : List I) : ℂ :=
|
||||
if grade q la = 1 ∧ grade q lb = 1 then - 1 else 1
|
||||
|
||||
lemma superCommuteCoef_comm {I : Type} (q : I → Fin 2) (la lb : List I) :
|
||||
superCommuteCoef q la lb = superCommuteCoef q lb la := by
|
||||
simp only [superCommuteCoef, Fin.isValue]
|
||||
congr 1
|
||||
exact Eq.propIntro (fun a => id (And.symm a)) fun a => id (And.symm a)
|
||||
|
||||
lemma superCommuteCoef_perm_snd {I : Type} (q : I → Fin 2) (la lb lb' : List I)
|
||||
(h : lb.Perm lb') :
|
||||
superCommuteCoef q la lb = superCommuteCoef q la lb' := by
|
||||
rw [superCommuteCoef, superCommuteCoef, grade_perm q h]
|
||||
|
||||
lemma superCommuteCoef_mul_self {I : Type} (q : I → Fin 2) (l lb : List I) :
|
||||
superCommuteCoef q l lb * superCommuteCoef q l lb = 1 := by
|
||||
simp only [superCommuteCoef, Fin.isValue, mul_ite, mul_neg, mul_one]
|
||||
have ha (a b : Fin 2) : (if a = 1 ∧ b = 1 then -if a = 1 ∧ b = 1 then -1 else 1
|
||||
else if a = 1 ∧ b = 1 then -1 else 1) = (1 : ℂ) := by
|
||||
fin_cases a <;> fin_cases b
|
||||
any_goals rfl
|
||||
simp
|
||||
exact ha (grade q l) (grade q lb)
|
||||
|
||||
lemma superCommuteCoef_empty {I : Type} (q : I → Fin 2) (la : List I) :
|
||||
superCommuteCoef q la [] = 1 := by
|
||||
simp only [superCommuteCoef, Fin.isValue, grade_empty, zero_ne_one, and_false, ↓reduceIte]
|
||||
|
||||
lemma superCommuteCoef_append {I : Type} (q : I → Fin 2) (la lb lc : List I) :
|
||||
superCommuteCoef q la (lb ++ lc) = superCommuteCoef q la lb * superCommuteCoef q la lc := by
|
||||
simp only [superCommuteCoef, Fin.isValue, grade_append, ite_eq_right_iff, zero_ne_one, imp_false,
|
||||
mul_ite, mul_neg, mul_one]
|
||||
by_cases hla : grade q la = 1
|
||||
· by_cases hlb : grade q lb = 1
|
||||
· by_cases hlc : grade q lc = 1
|
||||
· simp [hlc, hlb, hla]
|
||||
· have hc : grade q lc = 0 := by
|
||||
omega
|
||||
simp [hc, hlb, hla]
|
||||
· have hb : grade q lb = 0 := by
|
||||
omega
|
||||
by_cases hlc : grade q lc = 1
|
||||
· simp [hlc, hb]
|
||||
· have hc : grade q lc = 0 := by
|
||||
omega
|
||||
simp [hc, hb]
|
||||
· have ha : grade q la = 0 := by
|
||||
omega
|
||||
simp [ha]
|
||||
|
||||
lemma superCommuteCoef_cons {I : Type} (q : I → Fin 2) (i : I) (la lb : List I) :
|
||||
superCommuteCoef q la (i :: lb) = superCommuteCoef q la [i] * superCommuteCoef q la lb := by
|
||||
trans superCommuteCoef q la ([i] ++ lb)
|
||||
simp only [List.singleton_append]
|
||||
rw [superCommuteCoef_append]
|
||||
|
||||
def superCommuteCoefM {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) : ℂ :=
|
||||
(if grade (fun i => q i.fst) l = 1 ∧ grade q r = 1 then -1 else 1)
|
||||
|
||||
lemma superCommuteCoefM_empty {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (l : List (Σ i, f i)) :
|
||||
superCommuteCoefM q l [] = 1 := by
|
||||
simp [superCommuteCoefM]
|
||||
|
||||
def superCommuteCoefLE {I : Type} (q : I → Fin 2) (le1 :I → I → Prop) (r : List I)
|
||||
[DecidableRel le1] (i : I) (n : Fin r.length) : ℂ :=
|
||||
koszulSign le1 q r *
|
||||
superCommuteCoef q [i] (List.take (↑((HepLean.List.insertionSortEquiv le1 r) n))
|
||||
(List.insertionSort le1 r)) *
|
||||
koszulSign le1 q (r.eraseIdx ↑n)
|
||||
|
||||
lemma superCommuteCoefLE_eq_q {I : Type} (q : I → Fin 2) (le1 :I → I → Prop) (r : List I)
|
||||
[DecidableRel le1] (i : I) (n : Fin r.length)
|
||||
(hq : q i = q (r.get n)) :
|
||||
superCommuteCoefLE q le1 r i n =
|
||||
koszulSign le1 q r *
|
||||
superCommuteCoef q [r.get n] (List.take (↑(insertionSortEquiv le1 r n))
|
||||
(List.insertionSort le1 r)) *
|
||||
koszulSign le1 q (r.eraseIdx ↑n) := by
|
||||
simp [superCommuteCoefLE, superCommuteCoef, grade, hq]
|
||||
|
||||
lemma koszulSignInsert_eq_filter {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
(r0 : I) : (r : List I) →
|
||||
koszulSignInsert le1 q r0 r =
|
||||
koszulSignInsert le1 q r0 (List.filter (fun i => decide (¬ le1 r0 i)) r)
|
||||
| [] => by
|
||||
simp [koszulSignInsert]
|
||||
| r1 :: r => by
|
||||
dsimp only [koszulSignInsert, Fin.isValue]
|
||||
simp only [Fin.isValue, List.filter, decide_not]
|
||||
by_cases h : le1 r0 r1
|
||||
· simp only [h, ↓reduceIte, decide_True, Bool.not_true]
|
||||
rw [koszulSignInsert_eq_filter]
|
||||
congr
|
||||
simp
|
||||
· simp only [h, ↓reduceIte, Fin.isValue, decide_False, Bool.not_false]
|
||||
dsimp only [Fin.isValue, koszulSignInsert]
|
||||
simp only [Fin.isValue, h, ↓reduceIte]
|
||||
rw [koszulSignInsert_eq_filter]
|
||||
congr
|
||||
simp only [decide_not]
|
||||
simp
|
||||
|
||||
lemma koszulSignInsert_eq_grade {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
(r0 : I) (r : List I) : koszulSignInsert le1 q r0 r = if grade q [r0] = 1 ∧
|
||||
grade q (List.filter (fun i => decide (¬ le1 r0 i)) r) = 1 then -1 else 1 := by
|
||||
induction r with
|
||||
| nil =>
|
||||
simp [koszulSignInsert]
|
||||
| cons r1 r ih =>
|
||||
rw [koszulSignInsert_eq_filter]
|
||||
by_cases hr1 : ¬ le1 r0 r1
|
||||
· rw [List.filter_cons_of_pos]
|
||||
· dsimp only [koszulSignInsert, Fin.isValue, decide_not]
|
||||
rw [if_neg hr1]
|
||||
dsimp only [Fin.isValue, grade, ite_eq_right_iff, zero_ne_one, imp_false, decide_not]
|
||||
simp only [Fin.isValue, decide_not, ite_eq_right_iff, zero_ne_one, imp_false]
|
||||
have ha (a b c : Fin 2) : (if a = 1 ∧ b = 1 then -if ¬a = 0 ∧
|
||||
c = 1 then -1 else (1 : ℂ)
|
||||
else if ¬a = 0 ∧ c = 1 then -1 else 1) =
|
||||
if ¬a = 0 ∧ ¬b = c then -1 else 1 := by
|
||||
fin_cases a <;> fin_cases b <;> fin_cases c
|
||||
any_goals rfl
|
||||
simp
|
||||
rw [← ha (q r0) (q r1) (grade q (List.filter (fun a => !decide (le1 r0 a)) r))]
|
||||
congr
|
||||
· rw [koszulSignInsert_eq_filter] at ih
|
||||
simpa [grade] using ih
|
||||
· rw [koszulSignInsert_eq_filter] at ih
|
||||
simpa [grade] using ih
|
||||
· simp [hr1]
|
||||
· rw [List.filter_cons_of_neg]
|
||||
simp only [decide_not, Fin.isValue]
|
||||
rw [koszulSignInsert_eq_filter] at ih
|
||||
simpa [grade] using ih
|
||||
simpa using hr1
|
||||
|
||||
lemma koszulSignInsert_eq_perm {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) (r r' : List I)
|
||||
(a : I) [DecidableRel le1] (h : r.Perm r') :
|
||||
koszulSignInsert le1 q a r = koszulSignInsert le1 q a r' := by
|
||||
rw [koszulSignInsert_eq_grade]
|
||||
rw [koszulSignInsert_eq_grade]
|
||||
congr 1
|
||||
simp only [Fin.isValue, decide_not, eq_iff_iff, and_congr_right_iff]
|
||||
intro h'
|
||||
have hg : grade q (List.filter (fun i => !decide (le1 a i)) r) =
|
||||
grade q (List.filter (fun i => !decide (le1 a i)) r') := by
|
||||
rw [grade_count, grade_count]
|
||||
rw [List.countP_filter, List.countP_filter]
|
||||
rw [h.countP_eq]
|
||||
rw [hg]
|
||||
|
||||
lemma koszulSignInsert_eq_sort {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) (r : List I)
|
||||
(a : I) [DecidableRel le1] :
|
||||
koszulSignInsert le1 q a r = koszulSignInsert le1 q a (List.insertionSort le1 r) := by
|
||||
apply koszulSignInsert_eq_perm
|
||||
exact List.Perm.symm (List.perm_insertionSort le1 r)
|
||||
|
||||
lemma koszulSignInsert_eq_cons {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
[IsTotal I le1] [IsTrans I le1] (r0 : I) (r : List I) :
|
||||
koszulSignInsert le1 q r0 r = koszulSignInsert le1 q r0 (r0 :: r) := by
|
||||
simp only [koszulSignInsert, Fin.isValue, and_self]
|
||||
have h1 : le1 r0 r0 := by
|
||||
simpa using IsTotal.total (r := le1) r0 r0
|
||||
simp [h1]
|
||||
|
||||
def insertSign {I : Type} (q : I → Fin 2) (n : ℕ)
|
||||
(r0 : I) (r : List I) : ℂ :=
|
||||
superCommuteCoef q [r0] (List.take n r)
|
||||
|
||||
lemma take_insert_same {I : Type} (i : I) :
|
||||
(n : ℕ) → (r : List I) →
|
||||
List.take n (List.insertIdx n i r) = List.take n r
|
||||
| 0, _ => by simp
|
||||
| _+1, [] => by simp
|
||||
| n+1, a::as => by
|
||||
simp only [List.insertIdx_succ_cons, List.take_succ_cons, List.cons.injEq, true_and]
|
||||
exact take_insert_same i n as
|
||||
|
||||
lemma insertSign_insert {I : Type} (q : I → Fin 2) (n : ℕ)
|
||||
(r0 : I) (r : List I) : insertSign q n r0 r = insertSign q n r0 (List.insertIdx n r0 r) := by
|
||||
simp only [insertSign]
|
||||
congr 1
|
||||
rw [take_insert_same]
|
||||
|
||||
lemma take_eraseIdx_same {I : Type} :
|
||||
(n : ℕ) → (r : List I) →
|
||||
List.take n (List.eraseIdx r n) = List.take n r
|
||||
| 0, _ => by simp
|
||||
| _+1, [] => by simp
|
||||
| n+1, a::as => by
|
||||
simp only [List.eraseIdx_cons_succ, List.take_succ_cons, List.cons.injEq, true_and]
|
||||
exact take_eraseIdx_same n as
|
||||
|
||||
lemma insertSign_eraseIdx {I : Type} (q : I → Fin 2) (n : ℕ)
|
||||
(r0 : I) (r : List I) : insertSign q n r0 (r.eraseIdx n) = insertSign q n r0 r := by
|
||||
simp only [insertSign]
|
||||
congr 1
|
||||
rw [take_eraseIdx_same]
|
||||
|
||||
lemma insertSign_zero {I : Type} (q : I → Fin 2) (r0 : I) (r : List I) :
|
||||
insertSign q 0 r0 r = 1 := by
|
||||
simp [insertSign, superCommuteCoef]
|
||||
|
||||
lemma insertSign_succ_cons {I : Type} (q : I → Fin 2) (n : ℕ)
|
||||
(r0 r1 : I) (r : List I) : insertSign q (n + 1) r0 (r1 :: r) =
|
||||
superCommuteCoef q [r0] [r1] * insertSign q n r0 r := by
|
||||
simp only [insertSign, List.take_succ_cons]
|
||||
rw [superCommuteCoef_cons]
|
||||
|
||||
lemma take_insert_gt {I : Type} (i : I) :
|
||||
(n m : ℕ) → (h : n < m) → (r : List I) →
|
||||
List.take n (List.insertIdx m i r) = List.take n r
|
||||
| 0, 0, _, _ => by simp
|
||||
| 0, m + 1, _, _ => by simp
|
||||
| n+1, m + 1, _, [] => by simp
|
||||
| n+1, m + 1, h, a::as => by
|
||||
simp only [List.insertIdx_succ_cons, List.take_succ_cons, List.cons.injEq, true_and]
|
||||
refine take_insert_gt i n m (Nat.succ_lt_succ_iff.mp h) as
|
||||
|
||||
lemma insertSign_insert_gt {I : Type} (q : I → Fin 2) (n m : ℕ)
|
||||
(r0 r1 : I) (r : List I) (hn : n < m) :
|
||||
insertSign q n r0 (List.insertIdx m r1 r) = insertSign q n r0 r := by
|
||||
rw [insertSign, insertSign]
|
||||
congr 1
|
||||
exact take_insert_gt r1 n m hn r
|
||||
|
||||
lemma take_insert_let {I : Type} (i : I) :
|
||||
(n m : ℕ) → (h : m ≤ n) → (r : List I) → (hm : m ≤ r.length) →
|
||||
(List.take (n + 1) (List.insertIdx m i r)).Perm (i :: List.take n r)
|
||||
| 0, 0, h, _, _ => by simp
|
||||
| m + 1, 0, h, r, _ => by simp
|
||||
| n + 1, m + 1, h, [], hm => by
|
||||
simp at hm
|
||||
| n + 1, m + 1, h, a::as, hm => by
|
||||
simp only [List.insertIdx_succ_cons, List.take_succ_cons]
|
||||
have hp : (i :: a :: List.take n as).Perm (a :: i :: List.take n as) := by
|
||||
exact List.Perm.swap a i (List.take n as)
|
||||
refine List.Perm.trans ?_ hp.symm
|
||||
refine List.Perm.cons a ?_
|
||||
exact take_insert_let i n m (Nat.le_of_succ_le_succ h) as (Nat.le_of_succ_le_succ hm)
|
||||
|
||||
lemma insertSign_insert_lt_eq_insertSort {I : Type} (q : I → Fin 2) (n m : ℕ)
|
||||
(r0 r1 : I) (r : List I) (hn : m ≤ n) (hm : m ≤ r.length) :
|
||||
insertSign q (n + 1) r0 (List.insertIdx m r1 r) = insertSign q (n + 1) r0 (r1 :: r) := by
|
||||
rw [insertSign, insertSign]
|
||||
apply superCommuteCoef_perm_snd
|
||||
simp only [List.take_succ_cons]
|
||||
refine take_insert_let r1 n m hn r hm
|
||||
|
||||
lemma insertSign_insert_lt {I : Type} (q : I → Fin 2) (n m : ℕ)
|
||||
(r0 r1 : I) (r : List I) (hn : m ≤ n) (hm : m ≤ r.length) :
|
||||
insertSign q (n + 1) r0 (List.insertIdx m r1 r) = superCommuteCoef q [r0] [r1] *
|
||||
insertSign q n r0 r := by
|
||||
rw [insertSign_insert_lt_eq_insertSort, insertSign_succ_cons]
|
||||
exact hn
|
||||
exact hm
|
||||
|
||||
def koszulSignCons {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1] (r0 r1 : I) :
|
||||
ℂ :=
|
||||
if le1 r0 r1 then 1 else
|
||||
if q r0 = 1 ∧ q r1 = 1 then -1 else 1
|
||||
|
||||
lemma koszulSignCons_eq_superComuteCoef {I : Type} (q : I → Fin 2) (le1 : I → I → Prop)
|
||||
[DecidableRel le1] (r0 r1 : I) : koszulSignCons q le1 r0 r1 =
|
||||
if le1 r0 r1 then 1 else superCommuteCoef q [r0] [r1] := by
|
||||
simp only [koszulSignCons, Fin.isValue, superCommuteCoef, grade, ite_eq_right_iff, zero_ne_one,
|
||||
imp_false]
|
||||
congr 1
|
||||
by_cases h0 : q r0 = 1
|
||||
· by_cases h1 : q r1 = 1
|
||||
· simp [h0, h1]
|
||||
· have h1 : q r1 = 0 := by omega
|
||||
simp [h0, h1]
|
||||
· have h0 : q r0 = 0 := by omega
|
||||
by_cases h1 : q r1 = 1
|
||||
· simp [h0, h1]
|
||||
· have h1 : q r1 = 0 := by omega
|
||||
simp [h0, h1]
|
||||
|
||||
lemma koszulSignInsert_cons {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
[IsTotal I le1] [IsTrans I le1] (r0 r1 : I) (r : List I) :
|
||||
koszulSignInsert le1 q r0 (r1 :: r) = koszulSignCons q le1 r0 r1 *
|
||||
koszulSignInsert le1 q r0 r := by
|
||||
simp [koszulSignInsert, koszulSignCons]
|
||||
|
||||
lemma koszulSignInsert_eq_insertSign {I : Type} (q : I → Fin 2) (le1 : I → I → Prop)
|
||||
[DecidableRel le1] [IsTotal I le1] [IsTrans I le1] (r0 : I) (r : List I) :
|
||||
koszulSignInsert le1 q r0 r = insertSign q (orderedInsertPos le1 (List.insertionSort le1 r) r0)
|
||||
r0 (List.insertionSort le1 r) := by
|
||||
rw [koszulSignInsert_eq_cons, koszulSignInsert_eq_sort, koszulSignInsert_eq_filter,
|
||||
koszulSignInsert_eq_grade, insertSign, superCommuteCoef]
|
||||
congr
|
||||
simp only [List.filter_filter, Bool.and_self]
|
||||
rw [List.insertionSort]
|
||||
nth_rewrite 1 [List.orderedInsert_eq_take_drop]
|
||||
rw [List.filter_append]
|
||||
have h1 : List.filter (fun a => decide ¬le1 r0 a)
|
||||
(List.takeWhile (fun b => decide ¬le1 r0 b) (List.insertionSort le1 r))
|
||||
= (List.takeWhile (fun b => decide ¬le1 r0 b) (List.insertionSort le1 r)) := by
|
||||
induction r with
|
||||
| nil => simp
|
||||
| cons r1 r ih =>
|
||||
simp only [decide_not, List.insertionSort, List.filter_eq_self, Bool.not_eq_eq_eq_not,
|
||||
Bool.not_true, decide_eq_false_iff_not]
|
||||
intro a ha
|
||||
have ha' := List.mem_takeWhile_imp ha
|
||||
simp_all
|
||||
rw [h1]
|
||||
rw [List.filter_cons]
|
||||
simp only [decide_not, (IsTotal.to_isRefl le1).refl r0, not_true_eq_false, decide_False,
|
||||
Bool.false_eq_true, ↓reduceIte]
|
||||
rw [orderedInsertPos_take]
|
||||
simp only [decide_not, List.append_right_eq_self, List.filter_eq_nil_iff, Bool.not_eq_eq_eq_not,
|
||||
Bool.not_true, decide_eq_false_iff_not, Decidable.not_not]
|
||||
intro a ha
|
||||
refine List.Sorted.rel_of_mem_take_of_mem_drop
|
||||
(k := (orderedInsertPos le1 (List.insertionSort le1 r) r0).1 + 1)
|
||||
(List.sorted_insertionSort le1 (r0 :: r)) ?_ ?_
|
||||
· simp only [List.insertionSort, List.orderedInsert_eq_take_drop, decide_not]
|
||||
rw [List.take_append_eq_append_take]
|
||||
rw [List.take_of_length_le]
|
||||
· simp [orderedInsertPos]
|
||||
· simp [orderedInsertPos]
|
||||
· simp only [List.insertionSort, List.orderedInsert_eq_take_drop, decide_not]
|
||||
rw [List.drop_append_eq_append_drop]
|
||||
rw [List.drop_of_length_le]
|
||||
· simpa [orderedInsertPos] using ha
|
||||
· simp [orderedInsertPos]
|
||||
|
||||
lemma koszulSignInsert_insertIdx {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
(i j : I) [IsTotal I le1] [IsTrans I le1] (r : List I) (n : ℕ) (hn : n ≤ r.length) :
|
||||
koszulSignInsert le1 q j (List.insertIdx n i r) = koszulSignInsert le1 q j (i :: r) := by
|
||||
apply koszulSignInsert_eq_perm
|
||||
exact List.perm_insertIdx i r hn
|
||||
|
||||
lemma take_insertIdx {I : Type} (i : I) : (r : List I) → (n : ℕ) → (hn : n ≤ r.length) →
|
||||
List.take n (List.insertIdx n i r) = List.take n r
|
||||
| [], 0, h => by
|
||||
simp
|
||||
| [], n + 1, h => by
|
||||
simp at h
|
||||
| r0 :: r, 0, h => by
|
||||
simp
|
||||
| r0 :: r, n + 1, h => by
|
||||
simp only [List.insertIdx_succ_cons, List.take_succ_cons, List.cons.injEq, true_and]
|
||||
exact take_insertIdx i r n (Nat.le_of_lt_succ h)
|
||||
|
||||
lemma koszulSign_insertIdx {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
(i : I) [IsTotal I le1] [IsTrans I le1] : (r : List I) → (n : ℕ) → (hn : n ≤ r.length) →
|
||||
koszulSign le1 q (List.insertIdx n i r) = insertSign q n i r
|
||||
* koszulSign le1 q r
|
||||
* insertSign q (insertionSortEquiv le1 (List.insertIdx n i r) ⟨n, by
|
||||
rw [List.length_insertIdx _ _ hn]
|
||||
omega⟩) i
|
||||
(List.insertionSort le1 (List.insertIdx n i r))
|
||||
| [], 0, h => by
|
||||
simp [koszulSign, insertSign, superCommuteCoef, koszulSignInsert]
|
||||
| [], n + 1, h => by
|
||||
simp at h
|
||||
| r0 :: r, 0, h => by
|
||||
simp only [List.insertIdx_zero, List.insertionSort, List.length_cons, Fin.zero_eta]
|
||||
rw [koszulSign]
|
||||
trans koszulSign le1 q (r0 :: r) * koszulSignInsert le1 q i (r0 :: r)
|
||||
ring
|
||||
simp only [insertionSortEquiv, List.length_cons, Nat.succ_eq_add_one, List.insertionSort,
|
||||
orderedInsertEquiv, OrderIso.toEquiv_symm, Fin.symm_castOrderIso, HepLean.Fin.equivCons_trans,
|
||||
Equiv.trans_apply, HepLean.Fin.equivCons_zero, HepLean.Fin.finExtractOne_apply_eq,
|
||||
Fin.isValue, HepLean.Fin.finExtractOne_symm_inl_apply, RelIso.coe_fn_toEquiv,
|
||||
Fin.castOrderIso_apply, Fin.cast_mk, Fin.eta]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
rhs
|
||||
rw [orderedInsert_eq_insertIdx_orderedInsertPos]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
rw [← insertSign_insert]
|
||||
change insertSign q (↑(orderedInsertPos le1 ((List.insertionSort le1 (r0 :: r))) i)) i
|
||||
(List.insertionSort le1 (r0 :: r))
|
||||
rw [← koszulSignInsert_eq_insertSign q le1]
|
||||
rw [insertSign_zero]
|
||||
simp
|
||||
| r0 :: r, n + 1, h => by
|
||||
conv_lhs =>
|
||||
rw [List.insertIdx_succ_cons]
|
||||
rw [koszulSign]
|
||||
rw [koszulSign_insertIdx]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
simp only [List.insertIdx_succ_cons]
|
||||
simp only [List.insertionSort, List.length_cons, insertionSortEquiv, Nat.succ_eq_add_one,
|
||||
Equiv.trans_apply, HepLean.Fin.equivCons_succ]
|
||||
erw [orderedInsertEquiv_fin_succ]
|
||||
simp only [Fin.eta, Fin.coe_cast]
|
||||
rhs
|
||||
rw [orderedInsert_eq_insertIdx_orderedInsertPos]
|
||||
conv_rhs =>
|
||||
lhs
|
||||
rw [insertSign_succ_cons, koszulSign]
|
||||
ring_nf
|
||||
conv_lhs =>
|
||||
lhs
|
||||
rw [mul_assoc, mul_comm]
|
||||
rw [mul_assoc]
|
||||
conv_rhs =>
|
||||
rw [mul_assoc, mul_assoc]
|
||||
congr 1
|
||||
let rs := (List.insertionSort le1 (List.insertIdx n i r))
|
||||
have hnsL : n < (List.insertIdx n i r).length := by
|
||||
rw [List.length_insertIdx _ _]
|
||||
simp only [List.length_cons, add_le_add_iff_right] at h
|
||||
omega
|
||||
exact Nat.le_of_lt_succ h
|
||||
let ni : Fin rs.length := (insertionSortEquiv le1 (List.insertIdx n i r))
|
||||
⟨n, hnsL⟩
|
||||
let nro : Fin (rs.length + 1) :=
|
||||
⟨↑(orderedInsertPos le1 rs r0), orderedInsertPos_lt_length le1 rs r0⟩
|
||||
rw [koszulSignInsert_insertIdx, koszulSignInsert_cons]
|
||||
trans koszulSignInsert le1 q r0 r * (koszulSignCons q le1 r0 i *insertSign q ni i rs)
|
||||
· simp only [rs, ni]
|
||||
ring
|
||||
trans koszulSignInsert le1 q r0 r * (superCommuteCoef q [i] [r0] *
|
||||
insertSign q (nro.succAbove ni) i (List.insertIdx nro r0 rs))
|
||||
swap
|
||||
· simp only [rs, nro, ni]
|
||||
ring
|
||||
congr 1
|
||||
simp only [Fin.succAbove]
|
||||
have hns : rs.get ni = i := by
|
||||
simp only [Fin.eta, rs]
|
||||
rw [← insertionSortEquiv_get]
|
||||
simp only [Function.comp_apply, Equiv.symm_apply_apply, List.get_eq_getElem, ni]
|
||||
simp_all only [List.length_cons, add_le_add_iff_right, List.getElem_insertIdx_self]
|
||||
have hms : (List.orderedInsert le1 r0 rs).get ⟨nro, by simp⟩ = r0 := by
|
||||
simp [nro]
|
||||
have hc1 : ni.castSucc < nro → ¬ le1 r0 i := by
|
||||
intro hninro
|
||||
rw [← hns]
|
||||
exact lt_orderedInsertPos_rel le1 r0 rs ni hninro
|
||||
have hc2 : ¬ ni.castSucc < nro → le1 r0 i := by
|
||||
intro hninro
|
||||
rw [← hns]
|
||||
refine gt_orderedInsertPos_rel le1 r0 rs ?_ ni hninro
|
||||
exact List.sorted_insertionSort le1 (List.insertIdx n i r)
|
||||
by_cases hn : ni.castSucc < nro
|
||||
· simp only [hn, ↓reduceIte, Fin.coe_castSucc]
|
||||
rw [insertSign_insert_gt]
|
||||
swap
|
||||
· exact hn
|
||||
congr 1
|
||||
rw [koszulSignCons_eq_superComuteCoef]
|
||||
simp only [hc1 hn, ↓reduceIte]
|
||||
rw [superCommuteCoef_comm]
|
||||
· simp only [hn, ↓reduceIte, Fin.val_succ]
|
||||
rw [insertSign_insert_lt]
|
||||
rw [← mul_assoc]
|
||||
congr 1
|
||||
rw [superCommuteCoef_mul_self]
|
||||
rw [koszulSignCons]
|
||||
simp only [hc2 hn, ↓reduceIte]
|
||||
exact Nat.le_of_not_lt hn
|
||||
exact Nat.le_of_lt_succ (orderedInsertPos_lt_length le1 rs r0)
|
||||
· exact Nat.le_of_lt_succ h
|
||||
· exact Nat.le_of_lt_succ h
|
||||
|
||||
lemma insertIdx_eraseIdx {I : Type} :
|
||||
(n : ℕ) → (r : List I) → (hn : n < r.length) →
|
||||
List.insertIdx n (r.get ⟨n, hn⟩) (r.eraseIdx n) = r
|
||||
| n, [], hn => by
|
||||
simp at hn
|
||||
| 0, r0 :: r, hn => by
|
||||
simp
|
||||
| n + 1, r0 :: r, hn => by
|
||||
simp only [List.length_cons, List.get_eq_getElem, List.getElem_cons_succ,
|
||||
List.eraseIdx_cons_succ, List.insertIdx_succ_cons, List.cons.injEq, true_and]
|
||||
exact insertIdx_eraseIdx n r _
|
||||
|
||||
lemma superCommuteCoefLE_eq_get {I : Type} (q : I → Fin 2) (le1 :I → I → Prop) (r : List I)
|
||||
[DecidableRel le1] [IsTotal I le1] [IsTrans I le1] (i : I) (n : Fin r.length)
|
||||
(heq : q i = q (r.get n)) :
|
||||
superCommuteCoefLE q le1 r i n = superCommuteCoef q [r.get n] (r.take n) := by
|
||||
rw [superCommuteCoefLE_eq_q]
|
||||
let r' := r.eraseIdx ↑n
|
||||
have hr : List.insertIdx n (r.get n) (r.eraseIdx n) = r := by
|
||||
exact insertIdx_eraseIdx n.1 r n.prop
|
||||
conv_lhs =>
|
||||
lhs
|
||||
lhs
|
||||
rw [← hr]
|
||||
rw [koszulSign_insertIdx q le1 (r.get n) ((r.eraseIdx ↑n)) n (by
|
||||
rw [List.length_eraseIdx]
|
||||
simp only [Fin.is_lt, ↓reduceIte]
|
||||
omega)]
|
||||
rhs
|
||||
rhs
|
||||
rw [hr]
|
||||
conv_lhs =>
|
||||
lhs
|
||||
lhs
|
||||
rhs
|
||||
enter [2, 1, 1]
|
||||
rw [insertionSortEquiv_congr _ _ hr]
|
||||
simp only [List.get_eq_getElem, Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
|
||||
Fin.cast_mk, Fin.eta, Fin.coe_cast]
|
||||
conv_lhs =>
|
||||
lhs
|
||||
rw [mul_assoc]
|
||||
rhs
|
||||
rw [insertSign]
|
||||
rw [superCommuteCoef_mul_self]
|
||||
simp only [mul_one]
|
||||
rw [mul_assoc]
|
||||
rw [koszulSign_mul_self]
|
||||
simp only [mul_one]
|
||||
rw [insertSign_eraseIdx]
|
||||
rfl
|
||||
exact heq
|
||||
|
||||
end Wick
|
|
@ -1,198 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.Koszul.SuperCommute
|
||||
/-!
|
||||
|
||||
# Koszul signs and ordering for lists and algebras
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
|
||||
noncomputable section
|
||||
|
||||
lemma superCommute_ofList_ofListM {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ℂ) :
|
||||
superCommute (fun i => q i.1) (ofList l x) (ofListM f r y) =
|
||||
ofList l x * ofListM f r y +
|
||||
(if grade (fun i => q i.1) l = 1 ∧ grade q r = 1 then
|
||||
ofListM f r y * ofList l x else - ofListM f r y * ofList l x) := by
|
||||
conv_lhs => rw [ofListM_expand]
|
||||
rw [map_sum]
|
||||
conv_rhs =>
|
||||
lhs
|
||||
rw [ofListM_expand, Finset.mul_sum]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
rhs
|
||||
rw [ofListM_expand, ← Finset.sum_neg_distrib, Finset.sum_mul]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
lhs
|
||||
rw [ofListM_expand, Finset.sum_mul]
|
||||
rw [← Finset.sum_ite_irrel]
|
||||
rw [← Finset.sum_add_distrib]
|
||||
congr
|
||||
funext a
|
||||
rw [superCommute_ofList_ofList]
|
||||
congr 1
|
||||
· exact ofList_pair l a.toList x y
|
||||
congr 1
|
||||
· simp
|
||||
· exact ofList_pair a.toList l y x
|
||||
· rw [ofList_pair]
|
||||
simp only [neg_mul]
|
||||
|
||||
lemma superCommute_ofList_ofListM_superCommuteCoefM {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ℂ) :
|
||||
superCommute (fun i => q i.1) (ofList l x) (ofListM f r y) =
|
||||
ofList l x * ofListM f r y - superCommuteCoefM q l r • ofListM f r y * ofList l x := by
|
||||
rw [superCommute_ofList_ofListM, superCommuteCoefM]
|
||||
by_cases hq : grade (fun i => q i.fst) l = 1 ∧ grade q r = 1
|
||||
· simp [hq]
|
||||
· simp only [Fin.isValue, hq, ↓reduceIte, neg_mul, one_smul]
|
||||
abel
|
||||
|
||||
lemma ofList_ofListM_superCommute {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ℂ) :
|
||||
ofList l x * ofListM f r y = superCommuteCoefM q l r • ofListM f r y * ofList l x
|
||||
+ superCommute (fun i => q i.1) (ofList l x) (ofListM f r y) := by
|
||||
rw [superCommute_ofList_ofListM_superCommuteCoefM]
|
||||
abel
|
||||
|
||||
lemma ofListM_ofList_superCommute {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ℂ) :
|
||||
ofListM f r y * ofList l x = superCommuteCoefM q l r • (ofList l x * ofListM f r y)
|
||||
- superCommuteCoefM q l r • superCommute (fun i => q i.1) (ofList l x) (ofListM f r y) := by
|
||||
rw [ofList_ofListM_superCommute, superCommuteCoefM]
|
||||
by_cases hq : grade (fun i => q i.fst) l = 1 ∧ grade q r = 1
|
||||
· simp [hq]
|
||||
· simp [hq]
|
||||
|
||||
lemma superCommuteCoefM_append {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (l : List (Σ i, f i)) (r1 r2 : List I) :
|
||||
superCommuteCoefM q l (r1 ++ r2) = superCommuteCoefM q l r1 * superCommuteCoefM q l r2 := by
|
||||
simp only [superCommuteCoefM, Fin.isValue, grade_append, ite_eq_right_iff, zero_ne_one, imp_false,
|
||||
mul_ite, mul_neg, mul_one]
|
||||
by_cases hla : grade (fun i => q i.1) l = 1
|
||||
· by_cases hlb : grade q r1 = 1
|
||||
· by_cases hlc : grade q r2 = 1
|
||||
· simp [hlc, hlb, hla]
|
||||
· have hc : grade q r2 = 0 := by
|
||||
omega
|
||||
simp [hc, hlb, hla]
|
||||
· have hb : grade q r1 = 0 := by
|
||||
omega
|
||||
by_cases hlc : grade q r2 = 1
|
||||
· simp [hlc, hb]
|
||||
· have hc : grade q r2 = 0 := by
|
||||
omega
|
||||
simp [hc, hb]
|
||||
· have ha : grade (fun i => q i.1) l = 0 := by
|
||||
omega
|
||||
simp [ha]
|
||||
|
||||
def superCommuteTakeM {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ℂ) (n : ℕ)
|
||||
(hn : n < r.length) : FreeAlgebra ℂ (Σ i, f i) :=
|
||||
superCommuteCoefM q l (List.take n r) •
|
||||
(ofListM f (List.take n r) 1 *
|
||||
superCommute (fun i => q i.1) (ofList l x) (freeAlgebraMap f (FreeAlgebra.ι ℂ (r.get ⟨n, hn⟩)))
|
||||
* ofListM f (List.drop (n + 1) r) y)
|
||||
|
||||
lemma superCommuteM_ofList_cons {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ℂ) (b1 : I) :
|
||||
superCommute (fun i => q i.1) (ofList l x) (ofListM f (b1 :: r) y) =
|
||||
superCommute (fun i => q i.1) (ofList l x) (freeAlgebraMap f (FreeAlgebra.ι ℂ b1))
|
||||
* ofListM f r y + superCommuteCoefM q l [b1] •
|
||||
(ofListM f [b1] 1) * superCommute (fun i => q i.1) (ofList l x) (ofListM f r y) := by
|
||||
rw [ofListM_cons]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
rw [ofListM_expand]
|
||||
rw [Finset.mul_sum]
|
||||
rw [map_sum]
|
||||
trans ∑ (n : CreatAnnilateSect f r), ∑ j : f b1, ((superCommute fun i => q i.fst) (ofList l x))
|
||||
((FreeAlgebra.ι ℂ ⟨b1, j⟩) * ofList n.toList y)
|
||||
· apply congrArg
|
||||
funext n
|
||||
rw [← map_sum]
|
||||
congr
|
||||
rw [Finset.sum_mul]
|
||||
conv_rhs =>
|
||||
lhs
|
||||
rw [ofListM_expand, Finset.mul_sum]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
rhs
|
||||
rw [ofListM_expand]
|
||||
rw [map_sum]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
rw [Finset.mul_sum]
|
||||
rw [← Finset.sum_add_distrib]
|
||||
congr
|
||||
funext n
|
||||
rw [freeAlgebraMap_ι, map_sum, Finset.sum_mul]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
rw [ofListM_singleton]
|
||||
rw [Finset.smul_sum, Finset.sum_mul]
|
||||
rw [← Finset.sum_add_distrib]
|
||||
congr
|
||||
funext b
|
||||
trans ((superCommute fun i => q i.fst) (ofList l x)) (ofList (⟨b1, b⟩ :: n.toList) y)
|
||||
· congr
|
||||
rw [ofList_cons_eq_ofList]
|
||||
rw [ofList_singleton]
|
||||
rw [superCommute_ofList_cons]
|
||||
congr
|
||||
rw [ofList_singleton]
|
||||
simp
|
||||
|
||||
lemma superCommute_ofList_ofListM_sum {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ℂ) :
|
||||
superCommute (fun i => q i.1) (ofList l x) (ofListM f r y) =
|
||||
∑ (n : Fin r.length), superCommuteTakeM q l r x y n n.prop := by
|
||||
induction r with
|
||||
| nil =>
|
||||
simp only [superCommute_ofList_ofListM, Fin.isValue, grade_empty, zero_ne_one, and_false,
|
||||
↓reduceIte, neg_mul, List.length_nil, Finset.univ_eq_empty, Finset.sum_empty]
|
||||
rw [ofListM, ofList_empty']
|
||||
simp
|
||||
| cons b r ih =>
|
||||
rw [superCommuteM_ofList_cons]
|
||||
have h0 : ((superCommute fun i => q i.fst) (ofList l x))
|
||||
((freeAlgebraMap f) (FreeAlgebra.ι ℂ b)) * ofListM f r y =
|
||||
superCommuteTakeM q l (b :: r) x y 0 (Nat.zero_lt_succ r.length) := by
|
||||
simp [superCommuteTakeM, superCommuteCoefM_empty, ofListM_empty]
|
||||
rw [h0]
|
||||
have hf (g : Fin (b :: r).length → FreeAlgebra ℂ ((i : I) × f i)) : ∑ n, g n = g ⟨0,
|
||||
Nat.zero_lt_succ r.length⟩ + ∑ n, g (Fin.succ n) := by
|
||||
exact Fin.sum_univ_succAbove g ⟨0, Nat.zero_lt_succ r.length⟩
|
||||
rw [hf]
|
||||
congr
|
||||
rw [ih]
|
||||
rw [Finset.mul_sum]
|
||||
congr
|
||||
funext n
|
||||
simp only [superCommuteTakeM, Fin.eta, List.get_eq_getElem, Algebra.mul_smul_comm,
|
||||
Algebra.smul_mul_assoc, smul_smul, List.length_cons, Fin.val_succ, List.take_succ_cons,
|
||||
List.getElem_cons_succ, List.drop_succ_cons]
|
||||
congr 1
|
||||
· rw [mul_comm, ← superCommuteCoefM_append]
|
||||
rfl
|
||||
· simp only [← mul_assoc, mul_eq_mul_right_iff]
|
||||
apply Or.inl
|
||||
apply Or.inl
|
||||
rw [ofListM, ofListM, ofListM]
|
||||
rw [← map_mul]
|
||||
congr
|
||||
rw [← ofList_pair, one_mul]
|
||||
rfl
|
||||
|
||||
end
|
||||
end Wick
|
|
@ -6,6 +6,7 @@ Authors: Joseph Tooby-Smith
|
|||
import Mathlib.Algebra.FreeAlgebra
|
||||
import Mathlib.Algebra.Lie.OfAssociative
|
||||
import Mathlib.Analysis.Complex.Basic
|
||||
import HepLean.PerturbationTheory.Wick.Signs.StaticWickCoef
|
||||
/-!
|
||||
|
||||
# Koszul signs and ordering for lists and algebras
|
||||
|
@ -14,133 +15,6 @@ import Mathlib.Analysis.Complex.Basic
|
|||
|
||||
namespace Wick
|
||||
|
||||
/-- Gives a factor of `-1` when inserting `a` into a list `List I` in the ordered position
|
||||
for each fermion-fermion cross. -/
|
||||
def koszulSignInsert {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2) (a : I) :
|
||||
List I → ℂ
|
||||
| [] => 1
|
||||
| b :: l => if r a b then koszulSignInsert r q a l else
|
||||
if q a = 1 ∧ q b = 1 then - koszulSignInsert r q a l else koszulSignInsert r q a l
|
||||
|
||||
/-- When inserting a boson the `koszulSignInsert` is always `1`. -/
|
||||
lemma koszulSignInsert_boson {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2) (a : I)
|
||||
(ha : q a = 0) : (l : List I) → koszulSignInsert r q a l = 1
|
||||
| [] => by
|
||||
simp [koszulSignInsert]
|
||||
| b :: l => by
|
||||
simp only [koszulSignInsert, Fin.isValue, ite_eq_left_iff]
|
||||
rw [koszulSignInsert_boson r q a ha l, ha]
|
||||
simp only [Fin.isValue, zero_ne_one, false_and, ↓reduceIte, ite_self]
|
||||
|
||||
@[simp]
|
||||
lemma koszulSignInsert_mul_self {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2)
|
||||
(a : I) : (l : List I) → koszulSignInsert r q a l * koszulSignInsert r q a l = 1
|
||||
| [] => by
|
||||
simp [koszulSignInsert]
|
||||
| b :: l => by
|
||||
simp only [koszulSignInsert, Fin.isValue, mul_ite, ite_mul, neg_mul, mul_neg]
|
||||
by_cases hr : r a b
|
||||
· simp only [hr, ↓reduceIte]
|
||||
rw [koszulSignInsert_mul_self]
|
||||
· simp only [hr, ↓reduceIte, Fin.isValue]
|
||||
by_cases hq : q a = 1 ∧ q b = 1
|
||||
· simp only [hq, Fin.isValue, and_self, ↓reduceIte, neg_neg]
|
||||
rw [koszulSignInsert_mul_self]
|
||||
· simp only [Fin.isValue, hq, ↓reduceIte]
|
||||
rw [koszulSignInsert_mul_self]
|
||||
|
||||
lemma koszulSignInsert_le_forall {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2)
|
||||
(a : I) (l : List I) (hi : ∀ b, r a b) : koszulSignInsert r q a l = 1 := by
|
||||
induction l with
|
||||
| nil => rfl
|
||||
| cons j l ih =>
|
||||
simp only [koszulSignInsert, Fin.isValue, ite_eq_left_iff]
|
||||
rw [ih]
|
||||
simp only [Fin.isValue, ite_eq_left_iff, ite_eq_right_iff, and_imp]
|
||||
intro h
|
||||
exact False.elim (h (hi j))
|
||||
|
||||
lemma koszulSignInsert_ge_forall_append {I : Type} (r : I → I → Prop) [DecidableRel r]
|
||||
(q : I → Fin 2) (l : List I) (j i : I) (hi : ∀ j, r j i) :
|
||||
koszulSignInsert r q j l = koszulSignInsert r q j (l ++ [i]) := by
|
||||
induction l with
|
||||
| nil => simp [koszulSignInsert, hi]
|
||||
| cons b l ih =>
|
||||
simp only [koszulSignInsert, Fin.isValue, List.append_eq]
|
||||
by_cases hr : r j b
|
||||
· rw [if_pos hr, if_pos hr]
|
||||
rw [ih]
|
||||
· rw [if_neg hr, if_neg hr]
|
||||
rw [ih]
|
||||
|
||||
/-- Gives a factor of `- 1` for every fermion-fermion (`q` is `1`) crossing that occurs when sorting
|
||||
a list of based on `r`. -/
|
||||
def koszulSign {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2) :
|
||||
List I → ℂ
|
||||
| [] => 1
|
||||
| a :: l => koszulSignInsert r q a l * koszulSign r q l
|
||||
|
||||
def natTestQ : ℕ → Fin 2 := fun n => if n % 2 = 0 then 0 else 1
|
||||
|
||||
lemma koszulSign_mul_self {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2)
|
||||
(l : List I) : koszulSign r q l * koszulSign r q l = 1 := by
|
||||
induction l with
|
||||
| nil => simp [koszulSign]
|
||||
| cons a l ih =>
|
||||
simp only [koszulSign]
|
||||
trans (koszulSignInsert r q a l * koszulSignInsert r q a l) *
|
||||
(koszulSign r q l * koszulSign r q l)
|
||||
ring
|
||||
rw [ih]
|
||||
rw [koszulSignInsert_mul_self, mul_one]
|
||||
|
||||
@[simp]
|
||||
lemma koszulSign_freeMonoid_of {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2)
|
||||
(i : I) : koszulSign r q (FreeMonoid.of i) = 1 := by
|
||||
change koszulSign r q [i] = 1
|
||||
simp only [koszulSign, mul_one]
|
||||
rfl
|
||||
|
||||
lemma koszulSignInsert_erase_boson {I : Type} (q : I → Fin 2) (le1 :I → I → Prop)
|
||||
[DecidableRel le1] (r0 : I) :
|
||||
(r : List I) → (n : Fin r.length) → (heq : q (r.get n) = 0) →
|
||||
koszulSignInsert le1 q r0 (r.eraseIdx n) = koszulSignInsert le1 q r0 r
|
||||
| [], _, _ => by
|
||||
simp
|
||||
| r1 :: r, ⟨0, h⟩, hr => by
|
||||
simp only [List.eraseIdx_zero, List.tail_cons]
|
||||
simp only [List.length_cons, Fin.zero_eta, List.get_eq_getElem, Fin.val_zero,
|
||||
List.getElem_cons_zero, Fin.isValue] at hr
|
||||
rw [koszulSignInsert]
|
||||
simp [hr]
|
||||
| r1 :: r, ⟨n + 1, h⟩, hr => by
|
||||
simp only [List.eraseIdx_cons_succ]
|
||||
rw [koszulSignInsert, koszulSignInsert]
|
||||
rw [koszulSignInsert_erase_boson q le1 r0 r ⟨n, Nat.succ_lt_succ_iff.mp h⟩ hr]
|
||||
|
||||
lemma koszulSign_erase_boson {I : Type} (q : I → Fin 2) (le1 :I → I → Prop)
|
||||
[DecidableRel le1] :
|
||||
(r : List I) → (n : Fin r.length) → (heq : q (r.get n) = 0) →
|
||||
koszulSign le1 q (r.eraseIdx n) = koszulSign le1 q r
|
||||
| [], _ => by
|
||||
simp
|
||||
| r0 :: r, ⟨0, h⟩ => by
|
||||
simp only [List.length_cons, Fin.zero_eta, List.get_eq_getElem, Fin.val_zero,
|
||||
List.getElem_cons_zero, Fin.isValue, List.eraseIdx_zero, List.tail_cons, koszulSign]
|
||||
intro h
|
||||
rw [koszulSignInsert_boson]
|
||||
simp only [one_mul]
|
||||
exact h
|
||||
| r0 :: r, ⟨n + 1, h⟩ => by
|
||||
simp only [List.length_cons, List.get_eq_getElem, List.getElem_cons_succ, Fin.isValue,
|
||||
List.eraseIdx_cons_succ]
|
||||
intro h'
|
||||
rw [koszulSign, koszulSign]
|
||||
rw [koszulSign_erase_boson q le1 r ⟨n, Nat.succ_lt_succ_iff.mp h⟩]
|
||||
congr 1
|
||||
rw [koszulSignInsert_erase_boson q le1 r0 r ⟨n, Nat.succ_lt_succ_iff.mp h⟩ h']
|
||||
exact h'
|
||||
|
||||
noncomputable section
|
||||
|
||||
/-- Given a relation `r` on `I` sorts elements of `MonoidAlgebra ℂ (FreeMonoid I)` by `r` giving it
|
194
HepLean/PerturbationTheory/Wick/OfList.lean
Normal file
194
HepLean/PerturbationTheory/Wick/OfList.lean
Normal file
|
@ -0,0 +1,194 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.CreateAnnilateSection
|
||||
import HepLean.PerturbationTheory.Wick.KoszulOrder
|
||||
/-!
|
||||
|
||||
# Koszul signs and ordering for lists and algebras
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
open HepLean.List
|
||||
|
||||
noncomputable section
|
||||
|
||||
def ofList {I : Type} (l : List I) (x : ℂ) : FreeAlgebra ℂ I :=
|
||||
FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm (MonoidAlgebra.single l x)
|
||||
|
||||
lemma ofList_pair {I : Type} (l r : List I) (x y : ℂ) :
|
||||
ofList (l ++ r) (x * y) = ofList l x * ofList r y := by
|
||||
simp only [ofList, ← map_mul, MonoidAlgebra.single_mul_single, EmbeddingLike.apply_eq_iff_eq]
|
||||
rfl
|
||||
|
||||
lemma ofList_triple {I : Type} (la lb lc : List I) (xa xb xc : ℂ) :
|
||||
ofList (la ++ lb ++ lc) (xa * xb * xc) = ofList la xa * ofList lb xb * ofList lc xc := by
|
||||
rw [ofList_pair, ofList_pair]
|
||||
|
||||
lemma ofList_triple_assoc {I : Type} (la lb lc : List I) (xa xb xc : ℂ) :
|
||||
ofList (la ++ (lb ++ lc)) (xa * (xb * xc)) = ofList la xa * ofList lb xb * ofList lc xc := by
|
||||
rw [ofList_pair, ofList_pair]
|
||||
exact Eq.symm (mul_assoc (ofList la xa) (ofList lb xb) (ofList lc xc))
|
||||
|
||||
lemma ofList_cons_eq_ofList {I : Type} (l : List I) (i : I) (x : ℂ) :
|
||||
ofList (i :: l) x = ofList [i] 1 * ofList l x := by
|
||||
simp only [ofList, ← map_mul, MonoidAlgebra.single_mul_single, one_mul,
|
||||
EmbeddingLike.apply_eq_iff_eq]
|
||||
rfl
|
||||
|
||||
lemma ofList_singleton {I : Type} (i : I) :
|
||||
ofList [i] 1 = FreeAlgebra.ι ℂ i := by
|
||||
simp only [ofList, FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.of_apply,
|
||||
MonoidAlgebra.single, AlgEquiv.ofAlgHom_symm_apply, MonoidAlgebra.lift_single, one_smul]
|
||||
rfl
|
||||
|
||||
lemma ofList_eq_smul_one {I : Type} (l : List I) (x : ℂ) :
|
||||
ofList l x = x • ofList l 1 := by
|
||||
simp only [ofList]
|
||||
rw [← map_smul]
|
||||
simp
|
||||
|
||||
lemma ofList_empty {I : Type} : ofList [] 1 = (1 : FreeAlgebra ℂ I) := by
|
||||
simp only [ofList, EmbeddingLike.map_eq_one_iff]
|
||||
rfl
|
||||
|
||||
lemma ofList_empty' {I : Type} : ofList [] x = x • (1 : FreeAlgebra ℂ I) := by
|
||||
rw [ofList_eq_smul_one, ofList_empty]
|
||||
|
||||
lemma koszulOrder_ofList {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2)
|
||||
(l : List I) (x : ℂ) :
|
||||
koszulOrder r q (ofList l x) = (koszulSign r q l) • ofList (List.insertionSort r l) x := by
|
||||
rw [ofList]
|
||||
rw [koszulOrder_single]
|
||||
change ofList (List.insertionSort r l) _ = _
|
||||
rw [ofList_eq_smul_one]
|
||||
conv_rhs => rw [ofList_eq_smul_one]
|
||||
rw [smul_smul]
|
||||
|
||||
lemma ofList_insertionSort_eq_koszulOrder {I : Type} (r : I → I → Prop) [DecidableRel r]
|
||||
(q : I → Fin 2) (l : List I) (x : ℂ) :
|
||||
ofList (List.insertionSort r l) x = (koszulSign r q l) • koszulOrder r q (ofList l x) := by
|
||||
rw [koszulOrder_ofList]
|
||||
rw [smul_smul]
|
||||
rw [koszulSign_mul_self]
|
||||
simp
|
||||
|
||||
def sumFiber {I : Type} (f : I → Type) [∀ i, Fintype (f i)] :
|
||||
FreeAlgebra ℂ I →ₐ[ℂ] FreeAlgebra ℂ (Σ i, f i) :=
|
||||
FreeAlgebra.lift ℂ fun i => ∑ (j : f i), FreeAlgebra.ι ℂ ⟨i, j⟩
|
||||
|
||||
lemma sumFiber_ι {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (i : I) :
|
||||
sumFiber f (FreeAlgebra.ι ℂ i) = ∑ (b : f i), FreeAlgebra.ι ℂ ⟨i, b⟩ := by
|
||||
simp [sumFiber]
|
||||
|
||||
def ofListLift {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (l : List I) (x : ℂ) :
|
||||
FreeAlgebra ℂ (Σ i, f i) :=
|
||||
sumFiber f (ofList l x)
|
||||
|
||||
lemma ofListLift_empty {I : Type} (f : I → Type) [∀ i, Fintype (f i)] :
|
||||
ofListLift f [] 1 = 1 := by
|
||||
simp only [ofListLift, EmbeddingLike.map_eq_one_iff]
|
||||
rw [ofList_empty]
|
||||
exact map_one (sumFiber f)
|
||||
|
||||
lemma ofListLift_empty_smul {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (x : ℂ) :
|
||||
ofListLift f [] x = x • 1 := by
|
||||
simp only [ofListLift, EmbeddingLike.map_eq_one_iff]
|
||||
rw [ofList_eq_smul_one]
|
||||
rw [ofList_empty]
|
||||
simp
|
||||
|
||||
lemma ofListLift_cons {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (i : I) (r : List I) (x : ℂ) :
|
||||
ofListLift f (i :: r) x = (∑ j : f i, FreeAlgebra.ι ℂ ⟨i, j⟩) * (ofListLift f r x) := by
|
||||
rw [ofListLift, ofList_cons_eq_ofList, ofList_singleton, map_mul]
|
||||
conv_lhs => lhs; rw [sumFiber]
|
||||
rw [ofListLift]
|
||||
simp
|
||||
|
||||
lemma ofListLift_singleton {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (i : I) (x : ℂ) :
|
||||
ofListLift f [i] x = ∑ j : f i, x • FreeAlgebra.ι ℂ ⟨i, j⟩ := by
|
||||
simp only [ofListLift]
|
||||
rw [ofList_eq_smul_one, ofList_singleton, map_smul]
|
||||
rw [sumFiber_ι]
|
||||
rw [Finset.smul_sum]
|
||||
|
||||
lemma ofListLift_singleton_one {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (i : I) :
|
||||
ofListLift f [i] 1 = ∑ j : f i, FreeAlgebra.ι ℂ ⟨i, j⟩ := by
|
||||
simp only [ofListLift]
|
||||
rw [ofList_eq_smul_one, ofList_singleton, map_smul]
|
||||
rw [sumFiber_ι]
|
||||
rw [Finset.smul_sum]
|
||||
simp
|
||||
|
||||
lemma ofListLift_cons_eq_ofListLift {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (i : I)
|
||||
(r : List I) (x : ℂ) :
|
||||
ofListLift f (i :: r) x = ofListLift f [i] 1 * ofListLift f r x := by
|
||||
rw [ofListLift_cons, ofListLift_singleton]
|
||||
simp only [one_smul]
|
||||
|
||||
lemma ofListLift_expand {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (x : ℂ) :
|
||||
(l : List I) → ofListLift f l x = ∑ (a : CreateAnnilateSect f l), ofList a.toList x
|
||||
| [] => by
|
||||
simp only [ofListLift, CreateAnnilateSect, List.length_nil, List.get_eq_getElem,
|
||||
Finset.univ_unique, CreateAnnilateSect.toList, Finset.sum_const, Finset.card_singleton,
|
||||
one_smul]
|
||||
rw [ofList_eq_smul_one, map_smul, ofList_empty, ofList_eq_smul_one, ofList_empty, map_one]
|
||||
| i :: l => by
|
||||
rw [ofListLift_cons, ofListLift_expand f x l]
|
||||
conv_rhs => rw [← (CreateAnnilateSect.extractEquiv
|
||||
⟨0, by exact Nat.zero_lt_succ l.length⟩).symm.sum_comp (α := FreeAlgebra ℂ _)]
|
||||
erw [Finset.sum_product]
|
||||
rw [Finset.sum_mul]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
intro n
|
||||
rw [Finset.mul_sum]
|
||||
congr
|
||||
funext j
|
||||
congr
|
||||
funext n
|
||||
rw [← ofList_singleton, ← ofList_pair, one_mul]
|
||||
rfl
|
||||
|
||||
lemma koszulOrder_ofListLift {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
(l : List I) (x : ℂ) : koszulOrder (fun i j => le1 i.1 j.1) (fun i => q i.fst) (ofListLift f l x) =
|
||||
sumFiber f (koszulOrder le1 q (ofList l x)) := by
|
||||
rw [koszulOrder_ofList]
|
||||
rw [map_smul]
|
||||
change _ = _ • ofListLift _ _ _
|
||||
rw [ofListLift_expand]
|
||||
rw [map_sum]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
intro a
|
||||
rw [koszulOrder_ofList]
|
||||
rw [CreateAnnilateSect.toList_koszulSign]
|
||||
rw [← Finset.smul_sum]
|
||||
apply congrArg
|
||||
conv_lhs =>
|
||||
rhs
|
||||
intro n
|
||||
rw [← CreateAnnilateSect.sort_toList]
|
||||
rw [ofListLift_expand]
|
||||
refine Fintype.sum_equiv
|
||||
((HepLean.List.insertionSortEquiv le1 l).piCongr fun i => Equiv.cast ?_) _ _ ?_
|
||||
congr 1
|
||||
· rw [← HepLean.List.insertionSortEquiv_get]
|
||||
simp
|
||||
· intro x
|
||||
rfl
|
||||
|
||||
lemma koszulOrder_ofListLift_eq_ofListLift {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
(l : List I) (x : ℂ) : koszulOrder (fun i j => le1 i.1 j.1) (fun i => q i.fst)
|
||||
(ofListLift f l x) =
|
||||
koszulSign le1 q l • ofListLift f (List.insertionSort le1 l) x := by
|
||||
rw [koszulOrder_ofListLift, koszulOrder_ofList, map_smul]
|
||||
rfl
|
||||
|
||||
end
|
||||
end Wick
|
|
@ -3,7 +3,7 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.Koszul.SuperCommuteM
|
||||
import HepLean.PerturbationTheory.Wick.SuperCommute
|
||||
/-!
|
||||
|
||||
# Koszul signs and ordering for lists and algebras
|
||||
|
@ -45,12 +45,12 @@ lemma superCommute_ofList_singleton_ι_center [OperatorMap q le1 F] (i j :I) :
|
|||
|
||||
end OperatorMap
|
||||
|
||||
lemma superCommuteTake_operatorMap {I : Type} (q : I → Fin 2)
|
||||
lemma superCommuteSplit_operatorMap {I : Type} (q : I → Fin 2)
|
||||
(le1 : I → I → Prop) [DecidableRel le1]
|
||||
(lb : List I) (xa xb : ℂ) (n : ℕ)
|
||||
(hn : n < lb.length) {A : Type} [Semiring A] [Algebra ℂ A] (f : FreeAlgebra ℂ I →ₐ[ℂ] A)
|
||||
[OperatorMap q le1 f] (i : I) :
|
||||
f (superCommuteTake q [i] lb xa xb n hn) =
|
||||
f (superCommuteSplit q [i] lb xa xb n hn) =
|
||||
f (superCommute q (ofList [i] xa) (FreeAlgebra.ι ℂ (lb.get ⟨n, hn⟩)))
|
||||
* (superCommuteCoef q [i] (List.take n lb) •
|
||||
f (ofList (List.eraseIdx lb n) xb)) := by
|
||||
|
@ -58,29 +58,29 @@ lemma superCommuteTake_operatorMap {I : Type} (q : I → Fin 2)
|
|||
Subalgebra.center ℂ A :=
|
||||
OperatorMap.superCommute_ofList_singleton_ι_center (le1 := le1) f i (lb.get ⟨n, hn⟩)
|
||||
rw [Subalgebra.mem_center_iff] at hn
|
||||
rw [superCommuteTake, map_mul, map_mul, map_smul, hn, mul_assoc, smul_mul_assoc,
|
||||
rw [superCommuteSplit, map_mul, map_mul, map_smul, hn, mul_assoc, smul_mul_assoc,
|
||||
← map_mul, ← ofList_pair]
|
||||
congr
|
||||
· exact Eq.symm (List.eraseIdx_eq_take_drop_succ lb n)
|
||||
· exact one_mul xb
|
||||
|
||||
lemma superCommuteTakeM_operatorMap {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
lemma superCommuteLiftSplit_operatorMap {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (c : (Σ i, f i)) (r : List I) (x y : ℂ) (n : ℕ)
|
||||
(hn : n < r.length)
|
||||
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
|
||||
{A : Type} [Semiring A] [Algebra ℂ A] (F : FreeAlgebra ℂ (Σ i, f i) →ₐ[ℂ] A)
|
||||
[OperatorMap (fun i => q i.1) le1 F] :
|
||||
F (superCommuteTakeM q [c] r x y n hn) = superCommuteCoefM q [c] (List.take n r) •
|
||||
F (superCommuteLiftSplit q [c] r x y n hn) = superCommuteLiftCoef q [c] (List.take n r) •
|
||||
(F (superCommute (fun i => q i.1) (ofList [c] x)
|
||||
(freeAlgebraMap f (FreeAlgebra.ι ℂ (r.get ⟨n, hn⟩))))
|
||||
* F (ofListM f (List.eraseIdx r n) y)) := by
|
||||
rw [superCommuteTakeM]
|
||||
(sumFiber f (FreeAlgebra.ι ℂ (r.get ⟨n, hn⟩))))
|
||||
* F (ofListLift f (List.eraseIdx r n) y)) := by
|
||||
rw [superCommuteLiftSplit]
|
||||
rw [map_smul]
|
||||
congr
|
||||
rw [map_mul, map_mul]
|
||||
have h1 : F ((superCommute fun i => q i.fst) (ofList [c] x) ((freeAlgebraMap f)
|
||||
have h1 : F ((superCommute fun i => q i.fst) (ofList [c] x) ((sumFiber f)
|
||||
(FreeAlgebra.ι ℂ (r.get ⟨n, hn⟩)))) ∈ Subalgebra.center ℂ A := by
|
||||
rw [freeAlgebraMap_ι]
|
||||
rw [sumFiber_ι]
|
||||
rw [map_sum, map_sum]
|
||||
refine Subalgebra.sum_mem _ ?_
|
||||
intro n
|
||||
|
@ -88,7 +88,7 @@ lemma superCommuteTakeM_operatorMap {I : Type} {f : I → Type} [∀ i, Fintype
|
|||
rw [Subalgebra.mem_center_iff] at h1
|
||||
rw [h1, mul_assoc, ← map_mul]
|
||||
congr
|
||||
rw [ofListM, ofListM, ofListM, ← map_mul]
|
||||
rw [ofListLift, ofListLift, ofListLift, ← map_mul]
|
||||
congr
|
||||
rw [← ofList_pair, one_mul]
|
||||
congr
|
||||
|
@ -109,7 +109,7 @@ lemma superCommute_koszulOrder_le_ofList {I : Type}
|
|||
conv_lhs =>
|
||||
enter [2, 2]
|
||||
intro n
|
||||
rw [superCommuteTake_operatorMap (le1 := le1)]
|
||||
rw [superCommuteSplit_operatorMap (le1 := le1)]
|
||||
enter [1, 2, 2, 2]
|
||||
change ((List.insertionSort le1 r).get ∘ (HepLean.List.insertionSortEquiv le1 r)) n
|
||||
rw [HepLean.List.insertionSort_get_comp_insertionSortEquiv]
|
||||
|
@ -150,7 +150,7 @@ lemma koszulOrder_of_le_all_ofList {I : Type}
|
|||
conv_lhs =>
|
||||
enter [2, 2]
|
||||
rw [← ofList_singleton]
|
||||
rw [ofListM_ofList_superCommute' q]
|
||||
rw [ofListLift_ofList_superCommute' q]
|
||||
rw [map_sub]
|
||||
rw [sub_eq_add_neg]
|
||||
rw [map_add]
|
||||
|
@ -164,7 +164,7 @@ lemma koszulOrder_of_le_all_ofList {I : Type}
|
|||
rhs
|
||||
rw [superCommute_ofList_sum]
|
||||
rw [map_sum, map_sum]
|
||||
dsimp [superCommuteTake]
|
||||
dsimp [superCommuteSplit]
|
||||
rw [ofList_singleton]
|
||||
rhs
|
||||
intro n
|
||||
|
@ -243,29 +243,29 @@ lemma le_all_mul_koszulOrder_ofList_expand {I : Type}
|
|||
rfl
|
||||
exact fun j => hi j
|
||||
|
||||
lemma le_all_mul_koszulOrder_ofListM_expand {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
lemma le_all_mul_koszulOrder_ofListLift_expand {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (r : List I) (x : ℂ) (le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
|
||||
[IsTotal (Σ i, f i) le1] [IsTrans (Σ i, f i) le1]
|
||||
(i : (Σ i, f i)) (hi : ∀ (j : (Σ i, f i)), le1 j i)
|
||||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F] :
|
||||
F (ofList [i] 1 * koszulOrder le1 (fun i => q i.1) (ofListM f r x)) =
|
||||
F ((koszulOrder le1 fun i => q i.fst) (ofList [i] 1 * ofListM f r x)) +
|
||||
F (ofList [i] 1 * koszulOrder le1 (fun i => q i.1) (ofListLift f r x)) =
|
||||
F ((koszulOrder le1 fun i => q i.fst) (ofList [i] 1 * ofListLift f r x)) +
|
||||
∑ n : (Fin r.length), superCommuteCoef q [r.get n] (List.take (↑n) r) •
|
||||
F (((superCommute fun i => q i.fst) (ofList [i] 1)) (ofListM f [r.get n] 1)) *
|
||||
F ((koszulOrder le1 fun i => q i.fst) (ofListM f (r.eraseIdx ↑n) x)) := by
|
||||
F (((superCommute fun i => q i.fst) (ofList [i] 1)) (ofListLift f [r.get n] 1)) *
|
||||
F ((koszulOrder le1 fun i => q i.fst) (ofListLift f (r.eraseIdx ↑n) x)) := by
|
||||
match r with
|
||||
| [] =>
|
||||
simp only [map_mul, List.length_nil, Finset.univ_eq_empty, List.get_eq_getElem, List.take_nil,
|
||||
List.eraseIdx_nil, Algebra.smul_mul_assoc, Finset.sum_empty, add_zero]
|
||||
rw [ofListM_empty_smul]
|
||||
rw [ofListLift_empty_smul]
|
||||
simp only [map_smul, koszulOrder_one, map_one, Algebra.mul_smul_comm, mul_one]
|
||||
rw [ofList_singleton, koszulOrder_ι]
|
||||
| r0 :: r =>
|
||||
rw [ofListM_expand, map_sum, Finset.mul_sum, map_sum]
|
||||
let e1 (a : CreatAnnilateSect f (r0 :: r)) :
|
||||
rw [ofListLift_expand, map_sum, Finset.mul_sum, map_sum]
|
||||
let e1 (a : CreateAnnilateSect f (r0 :: r)) :
|
||||
Option (Fin a.toList.length) ≃ Option (Fin (r0 :: r).length) :=
|
||||
Equiv.optionCongr (Fin.castOrderIso (CreatAnnilateSect.toList_length a)).toEquiv
|
||||
Equiv.optionCongr (Fin.castOrderIso (CreateAnnilateSect.toList_length a)).toEquiv
|
||||
conv_lhs =>
|
||||
rhs
|
||||
intro a
|
||||
|
@ -287,25 +287,25 @@ lemma le_all_mul_koszulOrder_ofListM_expand {I : Type} {f : I → Type} [∀ i,
|
|||
rw [ofList_cons_eq_ofList]
|
||||
· congr
|
||||
funext n
|
||||
rw [← (CreatAnnilateSect.extractEquiv n).symm.sum_comp]
|
||||
rw [← (CreateAnnilateSect.extractEquiv n).symm.sum_comp]
|
||||
simp only [List.get_eq_getElem, List.length_cons, Equiv.optionCongr_symm, OrderIso.toEquiv_symm,
|
||||
Fin.symm_castOrderIso, Equiv.optionCongr_apply, RelIso.coe_fn_toEquiv, Option.map_some',
|
||||
Fin.castOrderIso_apply, Algebra.smul_mul_assoc, e1]
|
||||
erw [Finset.sum_product]
|
||||
have h1 (a0 : f (r0 :: r)[↑n]) (a : CreatAnnilateSect f ((r0 :: r).eraseIdx ↑n)) :
|
||||
have h1 (a0 : f (r0 :: r)[↑n]) (a : CreateAnnilateSect f ((r0 :: r).eraseIdx ↑n)) :
|
||||
superCommuteCenterOrder (fun i => q i.fst)
|
||||
((CreatAnnilateSect.extractEquiv n).symm (a0, a)).toList i F
|
||||
((CreateAnnilateSect.extractEquiv n).symm (a0, a)).toList i F
|
||||
(some (Fin.cast (by simp) n)) =
|
||||
superCommuteCoef q [(r0 :: r).get n] (List.take (↑n) (r0 :: r)) •
|
||||
F (((superCommute fun i => q i.fst) (ofList [i] 1))
|
||||
(FreeAlgebra.ι ℂ ⟨(r0 :: r).get n, a0⟩)) := by
|
||||
simp only [superCommuteCenterOrder, List.get_eq_getElem, List.length_cons, Fin.coe_cast]
|
||||
erw [CreatAnnilateSect.extractEquiv_symm_toList_get_same]
|
||||
erw [CreateAnnilateSect.extractEquiv_symm_toList_get_same]
|
||||
have hsc : superCommuteCoef (fun i => q i.fst) [⟨(r0 :: r).get n, a0⟩]
|
||||
(List.take (↑n) ((CreatAnnilateSect.extractEquiv n).symm (a0, a)).toList) =
|
||||
(List.take (↑n) ((CreateAnnilateSect.extractEquiv n).symm (a0, a)).toList) =
|
||||
superCommuteCoef q [(r0 :: r).get n] (List.take (↑n) ((r0 :: r))) := by
|
||||
simp only [superCommuteCoef, List.get_eq_getElem, List.length_cons, Fin.isValue,
|
||||
CreatAnnilateSect.toList_grade_take]
|
||||
CreateAnnilateSect.toList_grade_take]
|
||||
rfl
|
||||
erw [hsc]
|
||||
rfl
|
||||
|
@ -329,19 +329,19 @@ lemma le_all_mul_koszulOrder_ofListM_expand {I : Type} {f : I → Type} [∀ i,
|
|||
rhs
|
||||
rhs
|
||||
lhs
|
||||
rw [← CreatAnnilateSect.eraseIdx_toList]
|
||||
erw [CreatAnnilateSect.extractEquiv_symm_eraseIdx]
|
||||
rw [← CreateAnnilateSect.eraseIdx_toList]
|
||||
erw [CreateAnnilateSect.extractEquiv_symm_eraseIdx]
|
||||
rw [← Finset.sum_mul]
|
||||
conv_lhs =>
|
||||
lhs
|
||||
rw [← Finset.smul_sum]
|
||||
erw [← map_sum, ← map_sum, ← ofListM_singleton_one]
|
||||
erw [← map_sum, ← map_sum, ← ofListLift_singleton_one]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
rw [← map_sum, ← map_sum]
|
||||
simp only [List.get_eq_getElem, List.length_cons, Equiv.symm_apply_apply,
|
||||
Algebra.smul_mul_assoc]
|
||||
erw [← ofListM_expand]
|
||||
erw [← ofListLift_expand]
|
||||
simp only [List.get_eq_getElem, List.length_cons, Algebra.smul_mul_assoc]
|
||||
|
||||
end
|
100
HepLean/PerturbationTheory/Wick/Signs/Grade.lean
Normal file
100
HepLean/PerturbationTheory/Wick/Signs/Grade.lean
Normal file
|
@ -0,0 +1,100 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.Algebra.FreeAlgebra
|
||||
import Mathlib.Algebra.Lie.OfAssociative
|
||||
import Mathlib.Analysis.Complex.Basic
|
||||
/-!
|
||||
|
||||
# Koszul sign insert
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
|
||||
def grade {I : Type} (q : I → Fin 2) : (l : List I) → Fin 2
|
||||
| [] => 0
|
||||
| a :: l => if q a = grade q l then 0 else 1
|
||||
|
||||
@[simp]
|
||||
lemma grade_freeMonoid {I : Type} (q : I → Fin 2) (i : I) : grade q (FreeMonoid.of i) = q i := by
|
||||
simp only [grade, Fin.isValue]
|
||||
have ha (a : Fin 2) : (if a = 0 then 0 else 1) = a := by
|
||||
fin_cases a <;> rfl
|
||||
rw [ha]
|
||||
|
||||
@[simp]
|
||||
lemma grade_empty {I : Type} (q : I → Fin 2) : grade q [] = 0 := by
|
||||
simp [grade]
|
||||
|
||||
@[simp]
|
||||
lemma grade_append {I : Type} (q : I → Fin 2) (l r : List I) :
|
||||
grade q (l ++ r) = if grade q l = grade q r then 0 else 1 := by
|
||||
induction l with
|
||||
| nil =>
|
||||
simp only [List.nil_append, grade_empty, Fin.isValue]
|
||||
have ha (a : Fin 2) : (if 0 = a then 0 else 1) = a := by
|
||||
fin_cases a <;> rfl
|
||||
exact Eq.symm (Fin.eq_of_val_eq (congrArg Fin.val (ha (grade q r))))
|
||||
| cons a l ih =>
|
||||
simp only [grade, List.append_eq, Fin.isValue]
|
||||
erw [ih]
|
||||
have hab (a b c : Fin 2) : (if a = if b = c then 0 else 1 then (0 : Fin 2) else 1) =
|
||||
if (if a = b then 0 else 1) = c then 0 else 1 := by
|
||||
fin_cases a <;> fin_cases b <;> fin_cases c <;> rfl
|
||||
exact hab (q a) (grade q l) (grade q r)
|
||||
|
||||
lemma grade_count {I : Type} (q : I → Fin 2) (l : List I) :
|
||||
grade q l = if Nat.mod (List.countP (fun i => decide (q i = 1)) l) 2 = 0 then 0 else 1 := by
|
||||
induction l with
|
||||
| nil => simp
|
||||
| cons r0 r ih =>
|
||||
simp only [grade, Fin.isValue]
|
||||
rw [List.countP_cons]
|
||||
simp only [Fin.isValue, decide_eq_true_eq]
|
||||
rw [ih]
|
||||
by_cases h: q r0 = 1
|
||||
· simp only [h, Fin.isValue, ↓reduceIte]
|
||||
split
|
||||
next h1 =>
|
||||
simp_all only [Fin.isValue, ↓reduceIte, one_ne_zero]
|
||||
split
|
||||
next h2 =>
|
||||
simp_all only [Fin.isValue, one_ne_zero]
|
||||
have ha (a : ℕ) (ha : a % 2 = 0) : (a + 1) % 2 ≠ 0 := by
|
||||
omega
|
||||
exact ha (List.countP (fun i => decide (q i = 1)) r) h1 h2
|
||||
next h2 => simp_all only [Fin.isValue]
|
||||
next h1 =>
|
||||
simp_all only [Fin.isValue, ↓reduceIte]
|
||||
split
|
||||
next h2 => simp_all only [Fin.isValue]
|
||||
next h2 =>
|
||||
simp_all only [Fin.isValue, zero_ne_one]
|
||||
have ha (a : ℕ) (ha : ¬ a % 2 = 0) : (a + 1) % 2 = 0 := by
|
||||
omega
|
||||
exact h2 (ha (List.countP (fun i => decide (q i = 1)) r) h1)
|
||||
· have h0 : q r0 = 0 := by omega
|
||||
simp only [h0, Fin.isValue, zero_ne_one, ↓reduceIte, add_zero]
|
||||
by_cases hn : (List.countP (fun i => decide (q i = 1)) r).mod 2 = 0
|
||||
· simp [hn]
|
||||
· simp [hn]
|
||||
|
||||
lemma grade_perm {I : Type} (q : I → Fin 2) {l l' : List I} (h : l.Perm l') :
|
||||
grade q l = grade q l' := by
|
||||
rw [grade_count, grade_count, h.countP_eq]
|
||||
|
||||
lemma grade_orderedInsert {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
(l : List I) (i : I) : grade q (List.orderedInsert le1 i l) = grade q (i :: l) := by
|
||||
apply grade_perm
|
||||
exact List.perm_orderedInsert le1 i l
|
||||
|
||||
@[simp]
|
||||
lemma grade_insertionSort {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
(l : List I) : grade q (List.insertionSort le1 l) = grade q l := by
|
||||
apply grade_perm
|
||||
exact List.perm_insertionSort le1 l
|
||||
|
||||
end Wick
|
109
HepLean/PerturbationTheory/Wick/Signs/InsertSign.lean
Normal file
109
HepLean/PerturbationTheory/Wick/Signs/InsertSign.lean
Normal file
|
@ -0,0 +1,109 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Mathematics.List
|
||||
import HepLean.PerturbationTheory.Wick.Signs.SuperCommuteCoef
|
||||
/-!
|
||||
|
||||
# Koszul signs and ordering for lists and algebras
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
open HepLean.List
|
||||
|
||||
|
||||
def insertSign {I : Type} (q : I → Fin 2) (n : ℕ) (r0 : I) (r : List I) : ℂ :=
|
||||
superCommuteCoef q [r0] (List.take n r)
|
||||
|
||||
lemma take_insert_same {I : Type} (i : I) :
|
||||
(n : ℕ) → (r : List I) →
|
||||
List.take n (List.insertIdx n i r) = List.take n r
|
||||
| 0, _ => by simp
|
||||
| _+1, [] => by simp
|
||||
| n+1, a::as => by
|
||||
simp only [List.insertIdx_succ_cons, List.take_succ_cons, List.cons.injEq, true_and]
|
||||
exact take_insert_same i n as
|
||||
|
||||
lemma insertSign_insert {I : Type} (q : I → Fin 2) (n : ℕ)
|
||||
(r0 : I) (r : List I) : insertSign q n r0 r = insertSign q n r0 (List.insertIdx n r0 r) := by
|
||||
simp only [insertSign]
|
||||
congr 1
|
||||
rw [take_insert_same]
|
||||
|
||||
lemma take_eraseIdx_same {I : Type} :
|
||||
(n : ℕ) → (r : List I) →
|
||||
List.take n (List.eraseIdx r n) = List.take n r
|
||||
| 0, _ => by simp
|
||||
| _+1, [] => by simp
|
||||
| n+1, a::as => by
|
||||
simp only [List.eraseIdx_cons_succ, List.take_succ_cons, List.cons.injEq, true_and]
|
||||
exact take_eraseIdx_same n as
|
||||
|
||||
lemma insertSign_eraseIdx {I : Type} (q : I → Fin 2) (n : ℕ)
|
||||
(r0 : I) (r : List I) : insertSign q n r0 (r.eraseIdx n) = insertSign q n r0 r := by
|
||||
simp only [insertSign]
|
||||
congr 1
|
||||
rw [take_eraseIdx_same]
|
||||
|
||||
lemma insertSign_zero {I : Type} (q : I → Fin 2) (r0 : I) (r : List I) :
|
||||
insertSign q 0 r0 r = 1 := by
|
||||
simp [insertSign, superCommuteCoef]
|
||||
|
||||
lemma insertSign_succ_cons {I : Type} (q : I → Fin 2) (n : ℕ)
|
||||
(r0 r1 : I) (r : List I) : insertSign q (n + 1) r0 (r1 :: r) =
|
||||
superCommuteCoef q [r0] [r1] * insertSign q n r0 r := by
|
||||
simp only [insertSign, List.take_succ_cons]
|
||||
rw [superCommuteCoef_cons]
|
||||
|
||||
lemma take_insert_gt {I : Type} (i : I) :
|
||||
(n m : ℕ) → (h : n < m) → (r : List I) →
|
||||
List.take n (List.insertIdx m i r) = List.take n r
|
||||
| 0, 0, _, _ => by simp
|
||||
| 0, m + 1, _, _ => by simp
|
||||
| n+1, m + 1, _, [] => by simp
|
||||
| n+1, m + 1, h, a::as => by
|
||||
simp only [List.insertIdx_succ_cons, List.take_succ_cons, List.cons.injEq, true_and]
|
||||
refine take_insert_gt i n m (Nat.succ_lt_succ_iff.mp h) as
|
||||
|
||||
lemma insertSign_insert_gt {I : Type} (q : I → Fin 2) (n m : ℕ)
|
||||
(r0 r1 : I) (r : List I) (hn : n < m) :
|
||||
insertSign q n r0 (List.insertIdx m r1 r) = insertSign q n r0 r := by
|
||||
rw [insertSign, insertSign]
|
||||
congr 1
|
||||
exact take_insert_gt r1 n m hn r
|
||||
|
||||
lemma take_insert_let {I : Type} (i : I) :
|
||||
(n m : ℕ) → (h : m ≤ n) → (r : List I) → (hm : m ≤ r.length) →
|
||||
(List.take (n + 1) (List.insertIdx m i r)).Perm (i :: List.take n r)
|
||||
| 0, 0, h, _, _ => by simp
|
||||
| m + 1, 0, h, r, _ => by simp
|
||||
| n + 1, m + 1, h, [], hm => by
|
||||
simp at hm
|
||||
| n + 1, m + 1, h, a::as, hm => by
|
||||
simp only [List.insertIdx_succ_cons, List.take_succ_cons]
|
||||
have hp : (i :: a :: List.take n as).Perm (a :: i :: List.take n as) := by
|
||||
exact List.Perm.swap a i (List.take n as)
|
||||
refine List.Perm.trans ?_ hp.symm
|
||||
refine List.Perm.cons a ?_
|
||||
exact take_insert_let i n m (Nat.le_of_succ_le_succ h) as (Nat.le_of_succ_le_succ hm)
|
||||
|
||||
lemma insertSign_insert_lt_eq_insertSort {I : Type} (q : I → Fin 2) (n m : ℕ)
|
||||
(r0 r1 : I) (r : List I) (hn : m ≤ n) (hm : m ≤ r.length) :
|
||||
insertSign q (n + 1) r0 (List.insertIdx m r1 r) = insertSign q (n + 1) r0 (r1 :: r) := by
|
||||
rw [insertSign, insertSign]
|
||||
apply superCommuteCoef_perm_snd
|
||||
simp only [List.take_succ_cons]
|
||||
refine take_insert_let r1 n m hn r hm
|
||||
|
||||
lemma insertSign_insert_lt {I : Type} (q : I → Fin 2) (n m : ℕ)
|
||||
(r0 r1 : I) (r : List I) (hn : m ≤ n) (hm : m ≤ r.length) :
|
||||
insertSign q (n + 1) r0 (List.insertIdx m r1 r) = superCommuteCoef q [r0] [r1] *
|
||||
insertSign q n r0 r := by
|
||||
rw [insertSign_insert_lt_eq_insertSort, insertSign_succ_cons]
|
||||
exact hn
|
||||
exact hm
|
||||
|
||||
end Wick
|
235
HepLean/PerturbationTheory/Wick/Signs/KoszulSign.lean
Normal file
235
HepLean/PerturbationTheory/Wick/Signs/KoszulSign.lean
Normal file
|
@ -0,0 +1,235 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.Algebra.FreeAlgebra
|
||||
import Mathlib.Algebra.Lie.OfAssociative
|
||||
import Mathlib.Analysis.Complex.Basic
|
||||
import HepLean.PerturbationTheory.Wick.Signs.KoszulSignInsert
|
||||
/-!
|
||||
|
||||
# Koszul sign insert
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
|
||||
open HepLean.List
|
||||
|
||||
/-- Gives a factor of `- 1` for every fermion-fermion (`q` is `1`) crossing that occurs when sorting
|
||||
a list of based on `r`. -/
|
||||
def koszulSign {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2) :
|
||||
List I → ℂ
|
||||
| [] => 1
|
||||
| a :: l => koszulSignInsert r q a l * koszulSign r q l
|
||||
|
||||
|
||||
lemma koszulSign_mul_self {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2)
|
||||
(l : List I) : koszulSign r q l * koszulSign r q l = 1 := by
|
||||
induction l with
|
||||
| nil => simp [koszulSign]
|
||||
| cons a l ih =>
|
||||
simp only [koszulSign]
|
||||
trans (koszulSignInsert r q a l * koszulSignInsert r q a l) *
|
||||
(koszulSign r q l * koszulSign r q l)
|
||||
ring
|
||||
rw [ih]
|
||||
rw [koszulSignInsert_mul_self, mul_one]
|
||||
|
||||
@[simp]
|
||||
lemma koszulSign_freeMonoid_of {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2)
|
||||
(i : I) : koszulSign r q (FreeMonoid.of i) = 1 := by
|
||||
change koszulSign r q [i] = 1
|
||||
simp only [koszulSign, mul_one]
|
||||
rfl
|
||||
|
||||
lemma koszulSignInsert_erase_boson {I : Type} (q : I → Fin 2) (le1 :I → I → Prop)
|
||||
[DecidableRel le1] (r0 : I) :
|
||||
(r : List I) → (n : Fin r.length) → (heq : q (r.get n) = 0) →
|
||||
koszulSignInsert le1 q r0 (r.eraseIdx n) = koszulSignInsert le1 q r0 r
|
||||
| [], _, _ => by
|
||||
simp
|
||||
| r1 :: r, ⟨0, h⟩, hr => by
|
||||
simp only [List.eraseIdx_zero, List.tail_cons]
|
||||
simp only [List.length_cons, Fin.zero_eta, List.get_eq_getElem, Fin.val_zero,
|
||||
List.getElem_cons_zero, Fin.isValue] at hr
|
||||
rw [koszulSignInsert]
|
||||
simp [hr]
|
||||
| r1 :: r, ⟨n + 1, h⟩, hr => by
|
||||
simp only [List.eraseIdx_cons_succ]
|
||||
rw [koszulSignInsert, koszulSignInsert]
|
||||
rw [koszulSignInsert_erase_boson q le1 r0 r ⟨n, Nat.succ_lt_succ_iff.mp h⟩ hr]
|
||||
|
||||
lemma koszulSign_erase_boson {I : Type} (q : I → Fin 2) (le1 :I → I → Prop)
|
||||
[DecidableRel le1] :
|
||||
(r : List I) → (n : Fin r.length) → (heq : q (r.get n) = 0) →
|
||||
koszulSign le1 q (r.eraseIdx n) = koszulSign le1 q r
|
||||
| [], _ => by
|
||||
simp
|
||||
| r0 :: r, ⟨0, h⟩ => by
|
||||
simp only [List.length_cons, Fin.zero_eta, List.get_eq_getElem, Fin.val_zero,
|
||||
List.getElem_cons_zero, Fin.isValue, List.eraseIdx_zero, List.tail_cons, koszulSign]
|
||||
intro h
|
||||
rw [koszulSignInsert_boson]
|
||||
simp only [one_mul]
|
||||
exact h
|
||||
| r0 :: r, ⟨n + 1, h⟩ => by
|
||||
simp only [List.length_cons, List.get_eq_getElem, List.getElem_cons_succ, Fin.isValue,
|
||||
List.eraseIdx_cons_succ]
|
||||
intro h'
|
||||
rw [koszulSign, koszulSign]
|
||||
rw [koszulSign_erase_boson q le1 r ⟨n, Nat.succ_lt_succ_iff.mp h⟩]
|
||||
congr 1
|
||||
rw [koszulSignInsert_erase_boson q le1 r0 r ⟨n, Nat.succ_lt_succ_iff.mp h⟩ h']
|
||||
exact h'
|
||||
|
||||
|
||||
|
||||
def koszulSignCons {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1] (r0 r1 : I) :
|
||||
ℂ :=
|
||||
if le1 r0 r1 then 1 else
|
||||
if q r0 = 1 ∧ q r1 = 1 then -1 else 1
|
||||
|
||||
lemma koszulSignCons_eq_superComuteCoef {I : Type} (q : I → Fin 2) (le1 : I → I → Prop)
|
||||
[DecidableRel le1] (r0 r1 : I) : koszulSignCons q le1 r0 r1 =
|
||||
if le1 r0 r1 then 1 else superCommuteCoef q [r0] [r1] := by
|
||||
simp only [koszulSignCons, Fin.isValue, superCommuteCoef, grade, ite_eq_right_iff, zero_ne_one,
|
||||
imp_false]
|
||||
congr 1
|
||||
by_cases h0 : q r0 = 1
|
||||
· by_cases h1 : q r1 = 1
|
||||
· simp [h0, h1]
|
||||
· have h1 : q r1 = 0 := by omega
|
||||
simp [h0, h1]
|
||||
· have h0 : q r0 = 0 := by omega
|
||||
by_cases h1 : q r1 = 1
|
||||
· simp [h0, h1]
|
||||
· have h1 : q r1 = 0 := by omega
|
||||
simp [h0, h1]
|
||||
|
||||
lemma koszulSignInsert_cons {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
[IsTotal I le1] [IsTrans I le1] (r0 r1 : I) (r : List I) :
|
||||
koszulSignInsert le1 q r0 (r1 :: r) = (koszulSignCons q le1 r0 r1) *
|
||||
koszulSignInsert le1 q r0 r := by
|
||||
simp [koszulSignInsert, koszulSignCons]
|
||||
|
||||
lemma koszulSign_insertIdx {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
(i : I) [IsTotal I le1] [IsTrans I le1] : (r : List I) → (n : ℕ) → (hn : n ≤ r.length) →
|
||||
koszulSign le1 q (List.insertIdx n i r) = insertSign q n i r
|
||||
* koszulSign le1 q r
|
||||
* insertSign q (insertionSortEquiv le1 (List.insertIdx n i r) ⟨n, by
|
||||
rw [List.length_insertIdx _ _ hn]
|
||||
omega⟩) i
|
||||
(List.insertionSort le1 (List.insertIdx n i r))
|
||||
| [], 0, h => by
|
||||
simp [koszulSign, insertSign, superCommuteCoef, koszulSignInsert]
|
||||
| [], n + 1, h => by
|
||||
simp at h
|
||||
| r0 :: r, 0, h => by
|
||||
simp only [List.insertIdx_zero, List.insertionSort, List.length_cons, Fin.zero_eta]
|
||||
rw [koszulSign]
|
||||
trans koszulSign le1 q (r0 :: r) * koszulSignInsert le1 q i (r0 :: r)
|
||||
ring
|
||||
simp only [insertionSortEquiv, List.length_cons, Nat.succ_eq_add_one, List.insertionSort,
|
||||
orderedInsertEquiv, OrderIso.toEquiv_symm, Fin.symm_castOrderIso, HepLean.Fin.equivCons_trans,
|
||||
Equiv.trans_apply, HepLean.Fin.equivCons_zero, HepLean.Fin.finExtractOne_apply_eq,
|
||||
Fin.isValue, HepLean.Fin.finExtractOne_symm_inl_apply, RelIso.coe_fn_toEquiv,
|
||||
Fin.castOrderIso_apply, Fin.cast_mk, Fin.eta]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
rhs
|
||||
rw [orderedInsert_eq_insertIdx_orderedInsertPos]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
rw [← insertSign_insert]
|
||||
change insertSign q (↑(orderedInsertPos le1 ((List.insertionSort le1 (r0 :: r))) i)) i
|
||||
(List.insertionSort le1 (r0 :: r))
|
||||
rw [← koszulSignInsert_eq_insertSign q le1]
|
||||
rw [insertSign_zero]
|
||||
simp
|
||||
| r0 :: r, n + 1, h => by
|
||||
conv_lhs =>
|
||||
rw [List.insertIdx_succ_cons]
|
||||
rw [koszulSign]
|
||||
rw [koszulSign_insertIdx]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
simp only [List.insertIdx_succ_cons]
|
||||
simp only [List.insertionSort, List.length_cons, insertionSortEquiv, Nat.succ_eq_add_one,
|
||||
Equiv.trans_apply, HepLean.Fin.equivCons_succ]
|
||||
erw [orderedInsertEquiv_fin_succ]
|
||||
simp only [Fin.eta, Fin.coe_cast]
|
||||
rhs
|
||||
rw [orderedInsert_eq_insertIdx_orderedInsertPos]
|
||||
conv_rhs =>
|
||||
lhs
|
||||
rw [insertSign_succ_cons, koszulSign]
|
||||
ring_nf
|
||||
conv_lhs =>
|
||||
lhs
|
||||
rw [mul_assoc, mul_comm]
|
||||
rw [mul_assoc]
|
||||
conv_rhs =>
|
||||
rw [mul_assoc, mul_assoc]
|
||||
congr 1
|
||||
let rs := (List.insertionSort le1 (List.insertIdx n i r))
|
||||
have hnsL : n < (List.insertIdx n i r).length := by
|
||||
rw [List.length_insertIdx _ _]
|
||||
simp only [List.length_cons, add_le_add_iff_right] at h
|
||||
omega
|
||||
exact Nat.le_of_lt_succ h
|
||||
let ni : Fin rs.length := (insertionSortEquiv le1 (List.insertIdx n i r))
|
||||
⟨n, hnsL⟩
|
||||
let nro : Fin (rs.length + 1) :=
|
||||
⟨↑(orderedInsertPos le1 rs r0), orderedInsertPos_lt_length le1 rs r0⟩
|
||||
rw [koszulSignInsert_insertIdx, koszulSignInsert_cons]
|
||||
trans koszulSignInsert le1 q r0 r * (koszulSignCons q le1 r0 i *insertSign q ni i rs)
|
||||
· simp only [rs, ni]
|
||||
ring
|
||||
trans koszulSignInsert le1 q r0 r * (superCommuteCoef q [i] [r0] *
|
||||
insertSign q (nro.succAbove ni) i (List.insertIdx nro r0 rs))
|
||||
swap
|
||||
· simp only [rs, nro, ni]
|
||||
ring
|
||||
congr 1
|
||||
simp only [Fin.succAbove]
|
||||
have hns : rs.get ni = i := by
|
||||
simp only [Fin.eta, rs]
|
||||
rw [← insertionSortEquiv_get]
|
||||
simp only [Function.comp_apply, Equiv.symm_apply_apply, List.get_eq_getElem, ni]
|
||||
simp_all only [List.length_cons, add_le_add_iff_right, List.getElem_insertIdx_self]
|
||||
have hms : (List.orderedInsert le1 r0 rs).get ⟨nro, by simp⟩ = r0 := by
|
||||
simp [nro]
|
||||
have hc1 : ni.castSucc < nro → ¬ le1 r0 i := by
|
||||
intro hninro
|
||||
rw [← hns]
|
||||
exact lt_orderedInsertPos_rel le1 r0 rs ni hninro
|
||||
have hc2 : ¬ ni.castSucc < nro → le1 r0 i := by
|
||||
intro hninro
|
||||
rw [← hns]
|
||||
refine gt_orderedInsertPos_rel le1 r0 rs ?_ ni hninro
|
||||
exact List.sorted_insertionSort le1 (List.insertIdx n i r)
|
||||
by_cases hn : ni.castSucc < nro
|
||||
· simp only [hn, ↓reduceIte, Fin.coe_castSucc]
|
||||
rw [insertSign_insert_gt]
|
||||
swap
|
||||
· exact hn
|
||||
congr 1
|
||||
rw [koszulSignCons_eq_superComuteCoef]
|
||||
simp only [hc1 hn, ↓reduceIte]
|
||||
rw [superCommuteCoef_comm]
|
||||
· simp only [hn, ↓reduceIte, Fin.val_succ]
|
||||
rw [insertSign_insert_lt]
|
||||
rw [← mul_assoc]
|
||||
congr 1
|
||||
rw [superCommuteCoef_mul_self]
|
||||
rw [koszulSignCons]
|
||||
simp only [hc2 hn, ↓reduceIte]
|
||||
exact Nat.le_of_not_lt hn
|
||||
exact Nat.le_of_lt_succ (orderedInsertPos_lt_length le1 rs r0)
|
||||
· exact Nat.le_of_lt_succ h
|
||||
· exact Nat.le_of_lt_succ h
|
||||
|
||||
|
||||
end Wick
|
214
HepLean/PerturbationTheory/Wick/Signs/KoszulSignInsert.lean
Normal file
214
HepLean/PerturbationTheory/Wick/Signs/KoszulSignInsert.lean
Normal file
|
@ -0,0 +1,214 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.Algebra.FreeAlgebra
|
||||
import Mathlib.Algebra.Lie.OfAssociative
|
||||
import Mathlib.Analysis.Complex.Basic
|
||||
import HepLean.PerturbationTheory.Wick.Signs.InsertSign
|
||||
/-!
|
||||
|
||||
# Koszul sign insert
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
|
||||
open HepLean.List
|
||||
/-- Gives a factor of `-1` when inserting `a` into a list `List I` in the ordered position
|
||||
for each fermion-fermion cross. -/
|
||||
def koszulSignInsert {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2) (a : I) :
|
||||
List I → ℂ
|
||||
| [] => 1
|
||||
| b :: l => if r a b then koszulSignInsert r q a l else
|
||||
if q a = 1 ∧ q b = 1 then - koszulSignInsert r q a l else koszulSignInsert r q a l
|
||||
|
||||
/-- When inserting a boson the `koszulSignInsert` is always `1`. -/
|
||||
lemma koszulSignInsert_boson {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2) (a : I)
|
||||
(ha : q a = 0) : (l : List I) → koszulSignInsert r q a l = 1
|
||||
| [] => by
|
||||
simp [koszulSignInsert]
|
||||
| b :: l => by
|
||||
simp only [koszulSignInsert, Fin.isValue, ite_eq_left_iff]
|
||||
rw [koszulSignInsert_boson r q a ha l, ha]
|
||||
simp only [Fin.isValue, zero_ne_one, false_and, ↓reduceIte, ite_self]
|
||||
|
||||
@[simp]
|
||||
lemma koszulSignInsert_mul_self {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2)
|
||||
(a : I) : (l : List I) → koszulSignInsert r q a l * koszulSignInsert r q a l = 1
|
||||
| [] => by
|
||||
simp [koszulSignInsert]
|
||||
| b :: l => by
|
||||
simp only [koszulSignInsert, Fin.isValue, mul_ite, ite_mul, neg_mul, mul_neg]
|
||||
by_cases hr : r a b
|
||||
· simp only [hr, ↓reduceIte]
|
||||
rw [koszulSignInsert_mul_self]
|
||||
· simp only [hr, ↓reduceIte, Fin.isValue]
|
||||
by_cases hq : q a = 1 ∧ q b = 1
|
||||
· simp only [hq, Fin.isValue, and_self, ↓reduceIte, neg_neg]
|
||||
rw [koszulSignInsert_mul_self]
|
||||
· simp only [Fin.isValue, hq, ↓reduceIte]
|
||||
rw [koszulSignInsert_mul_self]
|
||||
|
||||
lemma koszulSignInsert_le_forall {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2)
|
||||
(a : I) (l : List I) (hi : ∀ b, r a b) : koszulSignInsert r q a l = 1 := by
|
||||
induction l with
|
||||
| nil => rfl
|
||||
| cons j l ih =>
|
||||
simp only [koszulSignInsert, Fin.isValue, ite_eq_left_iff]
|
||||
rw [ih]
|
||||
simp only [Fin.isValue, ite_eq_left_iff, ite_eq_right_iff, and_imp]
|
||||
intro h
|
||||
exact False.elim (h (hi j))
|
||||
|
||||
lemma koszulSignInsert_ge_forall_append {I : Type} (r : I → I → Prop) [DecidableRel r]
|
||||
(q : I → Fin 2) (l : List I) (j i : I) (hi : ∀ j, r j i) :
|
||||
koszulSignInsert r q j l = koszulSignInsert r q j (l ++ [i]) := by
|
||||
induction l with
|
||||
| nil => simp [koszulSignInsert, hi]
|
||||
| cons b l ih =>
|
||||
simp only [koszulSignInsert, Fin.isValue, List.append_eq]
|
||||
by_cases hr : r j b
|
||||
· rw [if_pos hr, if_pos hr]
|
||||
rw [ih]
|
||||
· rw [if_neg hr, if_neg hr]
|
||||
rw [ih]
|
||||
|
||||
lemma koszulSignInsert_eq_filter {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
(r0 : I) : (r : List I) →
|
||||
koszulSignInsert le1 q r0 r =
|
||||
koszulSignInsert le1 q r0 (List.filter (fun i => decide (¬ le1 r0 i)) r)
|
||||
| [] => by
|
||||
simp [koszulSignInsert]
|
||||
| r1 :: r => by
|
||||
dsimp only [koszulSignInsert, Fin.isValue]
|
||||
simp only [Fin.isValue, List.filter, decide_not]
|
||||
by_cases h : le1 r0 r1
|
||||
· simp only [h, ↓reduceIte, decide_True, Bool.not_true]
|
||||
rw [koszulSignInsert_eq_filter]
|
||||
congr
|
||||
simp
|
||||
· simp only [h, ↓reduceIte, Fin.isValue, decide_False, Bool.not_false]
|
||||
dsimp only [Fin.isValue, koszulSignInsert]
|
||||
simp only [Fin.isValue, h, ↓reduceIte]
|
||||
rw [koszulSignInsert_eq_filter]
|
||||
congr
|
||||
simp only [decide_not]
|
||||
simp
|
||||
|
||||
lemma koszulSignInsert_eq_cons {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
[IsTotal I le1] [IsTrans I le1] (r0 : I) (r : List I) :
|
||||
koszulSignInsert le1 q r0 r = koszulSignInsert le1 q r0 (r0 :: r) := by
|
||||
simp only [koszulSignInsert, Fin.isValue, and_self]
|
||||
have h1 : le1 r0 r0 := by
|
||||
simpa using IsTotal.total (r := le1) r0 r0
|
||||
simp [h1]
|
||||
|
||||
|
||||
lemma koszulSignInsert_eq_grade {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
(r0 : I) (r : List I) : koszulSignInsert le1 q r0 r = if grade q [r0] = 1 ∧
|
||||
grade q (List.filter (fun i => decide (¬ le1 r0 i)) r) = 1 then -1 else 1 := by
|
||||
induction r with
|
||||
| nil =>
|
||||
simp [koszulSignInsert]
|
||||
| cons r1 r ih =>
|
||||
rw [koszulSignInsert_eq_filter]
|
||||
by_cases hr1 : ¬ le1 r0 r1
|
||||
· rw [List.filter_cons_of_pos]
|
||||
· dsimp only [koszulSignInsert, Fin.isValue, decide_not]
|
||||
rw [if_neg hr1]
|
||||
dsimp only [Fin.isValue, grade, ite_eq_right_iff, zero_ne_one, imp_false, decide_not]
|
||||
simp only [Fin.isValue, decide_not, ite_eq_right_iff, zero_ne_one, imp_false]
|
||||
have ha (a b c : Fin 2) : (if a = 1 ∧ b = 1 then -if ¬a = 0 ∧
|
||||
c = 1 then -1 else (1 : ℂ)
|
||||
else if ¬a = 0 ∧ c = 1 then -1 else 1) =
|
||||
if ¬a = 0 ∧ ¬b = c then -1 else 1 := by
|
||||
fin_cases a <;> fin_cases b <;> fin_cases c
|
||||
any_goals rfl
|
||||
simp
|
||||
rw [← ha (q r0) (q r1) (grade q (List.filter (fun a => !decide (le1 r0 a)) r))]
|
||||
congr
|
||||
· rw [koszulSignInsert_eq_filter] at ih
|
||||
simpa [grade] using ih
|
||||
· rw [koszulSignInsert_eq_filter] at ih
|
||||
simpa [grade] using ih
|
||||
· simp [hr1]
|
||||
· rw [List.filter_cons_of_neg]
|
||||
simp only [decide_not, Fin.isValue]
|
||||
rw [koszulSignInsert_eq_filter] at ih
|
||||
simpa [grade] using ih
|
||||
simpa using hr1
|
||||
|
||||
lemma koszulSignInsert_eq_perm {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) (r r' : List I)
|
||||
(a : I) [DecidableRel le1] (h : r.Perm r') :
|
||||
koszulSignInsert le1 q a r = koszulSignInsert le1 q a r' := by
|
||||
rw [koszulSignInsert_eq_grade]
|
||||
rw [koszulSignInsert_eq_grade]
|
||||
congr 1
|
||||
simp only [Fin.isValue, decide_not, eq_iff_iff, and_congr_right_iff]
|
||||
intro h'
|
||||
have hg : grade q (List.filter (fun i => !decide (le1 a i)) r) =
|
||||
grade q (List.filter (fun i => !decide (le1 a i)) r') := by
|
||||
rw [grade_count, grade_count]
|
||||
rw [List.countP_filter, List.countP_filter]
|
||||
rw [h.countP_eq]
|
||||
rw [hg]
|
||||
|
||||
lemma koszulSignInsert_eq_sort {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) (r : List I)
|
||||
(a : I) [DecidableRel le1] :
|
||||
koszulSignInsert le1 q a r = koszulSignInsert le1 q a (List.insertionSort le1 r) := by
|
||||
apply koszulSignInsert_eq_perm
|
||||
exact List.Perm.symm (List.perm_insertionSort le1 r)
|
||||
|
||||
lemma koszulSignInsert_eq_insertSign {I : Type} (q : I → Fin 2) (le1 : I → I → Prop)
|
||||
[DecidableRel le1] [IsTotal I le1] [IsTrans I le1] (r0 : I) (r : List I) :
|
||||
koszulSignInsert le1 q r0 r = insertSign q (orderedInsertPos le1 (List.insertionSort le1 r) r0)
|
||||
r0 (List.insertionSort le1 r) := by
|
||||
rw [koszulSignInsert_eq_cons, koszulSignInsert_eq_sort, koszulSignInsert_eq_filter,
|
||||
koszulSignInsert_eq_grade, insertSign, superCommuteCoef]
|
||||
congr
|
||||
simp only [List.filter_filter, Bool.and_self]
|
||||
rw [List.insertionSort]
|
||||
nth_rewrite 1 [List.orderedInsert_eq_take_drop]
|
||||
rw [List.filter_append]
|
||||
have h1 : List.filter (fun a => decide ¬le1 r0 a)
|
||||
(List.takeWhile (fun b => decide ¬le1 r0 b) (List.insertionSort le1 r))
|
||||
= (List.takeWhile (fun b => decide ¬le1 r0 b) (List.insertionSort le1 r)) := by
|
||||
induction r with
|
||||
| nil => simp
|
||||
| cons r1 r ih =>
|
||||
simp only [decide_not, List.insertionSort, List.filter_eq_self, Bool.not_eq_eq_eq_not,
|
||||
Bool.not_true, decide_eq_false_iff_not]
|
||||
intro a ha
|
||||
have ha' := List.mem_takeWhile_imp ha
|
||||
simp_all
|
||||
rw [h1]
|
||||
rw [List.filter_cons]
|
||||
simp only [decide_not, (IsTotal.to_isRefl le1).refl r0, not_true_eq_false, decide_False,
|
||||
Bool.false_eq_true, ↓reduceIte]
|
||||
rw [orderedInsertPos_take]
|
||||
simp only [decide_not, List.append_right_eq_self, List.filter_eq_nil_iff, Bool.not_eq_eq_eq_not,
|
||||
Bool.not_true, decide_eq_false_iff_not, Decidable.not_not]
|
||||
intro a ha
|
||||
refine List.Sorted.rel_of_mem_take_of_mem_drop
|
||||
(k := (orderedInsertPos le1 (List.insertionSort le1 r) r0).1 + 1)
|
||||
(List.sorted_insertionSort le1 (r0 :: r)) ?_ ?_
|
||||
· simp only [List.insertionSort, List.orderedInsert_eq_take_drop, decide_not]
|
||||
rw [List.take_append_eq_append_take]
|
||||
rw [List.take_of_length_le]
|
||||
· simp [orderedInsertPos]
|
||||
· simp [orderedInsertPos]
|
||||
· simp only [List.insertionSort, List.orderedInsert_eq_take_drop, decide_not]
|
||||
rw [List.drop_append_eq_append_drop]
|
||||
rw [List.drop_of_length_le]
|
||||
· simpa [orderedInsertPos] using ha
|
||||
· simp [orderedInsertPos]
|
||||
|
||||
lemma koszulSignInsert_insertIdx {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
(i j : I) [IsTotal I le1] [IsTrans I le1] (r : List I) (n : ℕ) (hn : n ≤ r.length) :
|
||||
koszulSignInsert le1 q j (List.insertIdx n i r) = koszulSignInsert le1 q j (i :: r) := by
|
||||
apply koszulSignInsert_eq_perm
|
||||
exact List.perm_insertIdx i r hn
|
||||
|
||||
end Wick
|
91
HepLean/PerturbationTheory/Wick/Signs/StaticWickCoef.lean
Normal file
91
HepLean/PerturbationTheory/Wick/Signs/StaticWickCoef.lean
Normal file
|
@ -0,0 +1,91 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.Algebra.FreeAlgebra
|
||||
import Mathlib.Algebra.Lie.OfAssociative
|
||||
import Mathlib.Analysis.Complex.Basic
|
||||
import HepLean.PerturbationTheory.Wick.Signs.KoszulSign
|
||||
/-!
|
||||
|
||||
# Koszul sign insert
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
|
||||
open HepLean.List
|
||||
|
||||
def superCommuteCoefLE {I : Type} (q : I → Fin 2) (le1 :I → I → Prop) (r : List I)
|
||||
[DecidableRel le1] (i : I) (n : Fin r.length) : ℂ :=
|
||||
koszulSign le1 q r *
|
||||
superCommuteCoef q [i] (List.take (↑((HepLean.List.insertionSortEquiv le1 r) n))
|
||||
(List.insertionSort le1 r)) *
|
||||
koszulSign le1 q (r.eraseIdx ↑n)
|
||||
|
||||
lemma superCommuteCoefLE_eq_q {I : Type} (q : I → Fin 2) (le1 :I → I → Prop) (r : List I)
|
||||
[DecidableRel le1] (i : I) (n : Fin r.length)
|
||||
(hq : q i = q (r.get n)) :
|
||||
superCommuteCoefLE q le1 r i n =
|
||||
koszulSign le1 q r *
|
||||
superCommuteCoef q [r.get n] (List.take (↑(insertionSortEquiv le1 r n))
|
||||
(List.insertionSort le1 r)) *
|
||||
koszulSign le1 q (r.eraseIdx ↑n) := by
|
||||
simp [superCommuteCoefLE, superCommuteCoef, grade, hq]
|
||||
|
||||
|
||||
lemma insertIdx_eraseIdx {I : Type} :
|
||||
(n : ℕ) → (r : List I) → (hn : n < r.length) →
|
||||
List.insertIdx n (r.get ⟨n, hn⟩) (r.eraseIdx n) = r
|
||||
| n, [], hn => by
|
||||
simp at hn
|
||||
| 0, r0 :: r, hn => by
|
||||
simp
|
||||
| n + 1, r0 :: r, hn => by
|
||||
simp only [List.length_cons, List.get_eq_getElem, List.getElem_cons_succ,
|
||||
List.eraseIdx_cons_succ, List.insertIdx_succ_cons, List.cons.injEq, true_and]
|
||||
exact insertIdx_eraseIdx n r _
|
||||
|
||||
lemma superCommuteCoefLE_eq_get {I : Type} (q : I → Fin 2) (le1 :I → I → Prop) (r : List I)
|
||||
[DecidableRel le1] [IsTotal I le1] [IsTrans I le1] (i : I) (n : Fin r.length)
|
||||
(heq : q i = q (r.get n)) :
|
||||
superCommuteCoefLE q le1 r i n = superCommuteCoef q [r.get n] (r.take n) := by
|
||||
rw [superCommuteCoefLE_eq_q]
|
||||
let r' := r.eraseIdx ↑n
|
||||
have hr : List.insertIdx n (r.get n) (r.eraseIdx n) = r := by
|
||||
exact insertIdx_eraseIdx n.1 r n.prop
|
||||
conv_lhs =>
|
||||
lhs
|
||||
lhs
|
||||
rw [← hr]
|
||||
rw [koszulSign_insertIdx q le1 (r.get n) ((r.eraseIdx ↑n)) n (by
|
||||
rw [List.length_eraseIdx]
|
||||
simp only [Fin.is_lt, ↓reduceIte]
|
||||
omega)]
|
||||
rhs
|
||||
rhs
|
||||
rw [hr]
|
||||
conv_lhs =>
|
||||
lhs
|
||||
lhs
|
||||
rhs
|
||||
enter [2, 1, 1]
|
||||
rw [insertionSortEquiv_congr _ _ hr]
|
||||
simp only [List.get_eq_getElem, Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
|
||||
Fin.cast_mk, Fin.eta, Fin.coe_cast]
|
||||
conv_lhs =>
|
||||
lhs
|
||||
rw [mul_assoc]
|
||||
rhs
|
||||
rw [insertSign]
|
||||
rw [superCommuteCoef_mul_self]
|
||||
simp only [mul_one]
|
||||
rw [mul_assoc]
|
||||
rw [koszulSign_mul_self]
|
||||
simp only [mul_one]
|
||||
rw [insertSign_eraseIdx]
|
||||
rfl
|
||||
exact heq
|
||||
|
||||
end Wick
|
83
HepLean/PerturbationTheory/Wick/Signs/SuperCommuteCoef.lean
Normal file
83
HepLean/PerturbationTheory/Wick/Signs/SuperCommuteCoef.lean
Normal file
|
@ -0,0 +1,83 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Mathematics.List
|
||||
import HepLean.PerturbationTheory.Wick.Signs.Grade
|
||||
/-!
|
||||
|
||||
# Koszul signs and ordering for lists and algebras
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
open HepLean.List
|
||||
|
||||
def superCommuteCoef {I : Type} (q : I → Fin 2) (la lb : List I) : ℂ :=
|
||||
if grade q la = 1 ∧ grade q lb = 1 then - 1 else 1
|
||||
|
||||
lemma superCommuteCoef_comm {I : Type} (q : I → Fin 2) (la lb : List I) :
|
||||
superCommuteCoef q la lb = superCommuteCoef q lb la := by
|
||||
simp only [superCommuteCoef, Fin.isValue]
|
||||
congr 1
|
||||
exact Eq.propIntro (fun a => id (And.symm a)) fun a => id (And.symm a)
|
||||
|
||||
def superCommuteLiftCoef {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) : ℂ :=
|
||||
(if grade (fun i => q i.fst) l = 1 ∧ grade q r = 1 then -1 else 1)
|
||||
|
||||
lemma superCommuteLiftCoef_empty {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (l : List (Σ i, f i)) :
|
||||
superCommuteLiftCoef q l [] = 1 := by
|
||||
simp [superCommuteLiftCoef]
|
||||
|
||||
lemma superCommuteCoef_perm_snd {I : Type} (q : I → Fin 2) (la lb lb' : List I)
|
||||
(h : lb.Perm lb') :
|
||||
superCommuteCoef q la lb = superCommuteCoef q la lb' := by
|
||||
rw [superCommuteCoef, superCommuteCoef, grade_perm q h]
|
||||
|
||||
lemma superCommuteCoef_mul_self {I : Type} (q : I → Fin 2) (l lb : List I) :
|
||||
superCommuteCoef q l lb * superCommuteCoef q l lb = 1 := by
|
||||
simp only [superCommuteCoef, Fin.isValue, mul_ite, mul_neg, mul_one]
|
||||
have ha (a b : Fin 2) : (if a = 1 ∧ b = 1 then -if a = 1 ∧ b = 1 then -1 else 1
|
||||
else if a = 1 ∧ b = 1 then -1 else 1) = (1 : ℂ) := by
|
||||
fin_cases a <;> fin_cases b
|
||||
any_goals rfl
|
||||
simp
|
||||
exact ha (grade q l) (grade q lb)
|
||||
|
||||
lemma superCommuteCoef_empty {I : Type} (q : I → Fin 2) (la : List I) :
|
||||
superCommuteCoef q la [] = 1 := by
|
||||
simp only [superCommuteCoef, Fin.isValue, grade_empty, zero_ne_one, and_false, ↓reduceIte]
|
||||
|
||||
lemma superCommuteCoef_append {I : Type} (q : I → Fin 2) (la lb lc : List I) :
|
||||
superCommuteCoef q la (lb ++ lc) = superCommuteCoef q la lb * superCommuteCoef q la lc := by
|
||||
simp only [superCommuteCoef, Fin.isValue, grade_append, ite_eq_right_iff, zero_ne_one, imp_false,
|
||||
mul_ite, mul_neg, mul_one]
|
||||
by_cases hla : grade q la = 1
|
||||
· by_cases hlb : grade q lb = 1
|
||||
· by_cases hlc : grade q lc = 1
|
||||
· simp [hlc, hlb, hla]
|
||||
· have hc : grade q lc = 0 := by
|
||||
omega
|
||||
simp [hc, hlb, hla]
|
||||
· have hb : grade q lb = 0 := by
|
||||
omega
|
||||
by_cases hlc : grade q lc = 1
|
||||
· simp [hlc, hb]
|
||||
· have hc : grade q lc = 0 := by
|
||||
omega
|
||||
simp [hc, hb]
|
||||
· have ha : grade q la = 0 := by
|
||||
omega
|
||||
simp [ha]
|
||||
|
||||
lemma superCommuteCoef_cons {I : Type} (q : I → Fin 2) (i : I) (la lb : List I) :
|
||||
superCommuteCoef q la (i :: lb) = superCommuteCoef q la [i] * superCommuteCoef q la lb := by
|
||||
trans superCommuteCoef q la ([i] ++ lb)
|
||||
simp only [List.singleton_append]
|
||||
rw [superCommuteCoef_append]
|
||||
|
||||
|
||||
end Wick
|
109
HepLean/PerturbationTheory/Wick/StaticTheorem.lean
Normal file
109
HepLean/PerturbationTheory/Wick/StaticTheorem.lean
Normal file
|
@ -0,0 +1,109 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.Contraction
|
||||
/-!
|
||||
|
||||
# Static Wick's theorem
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
|
||||
noncomputable section
|
||||
|
||||
open HepLean.List
|
||||
|
||||
lemma static_wick_nil {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2)
|
||||
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
|
||||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F]
|
||||
(S : Contractions.Splitting f le1) :
|
||||
F (ofListLift f [] 1) = ∑ c : Contractions [],
|
||||
c.toCenterTerm f q le1 F S *
|
||||
F (koszulOrder le1 (fun i => q i.fst) (ofListLift f c.normalize 1)) := by
|
||||
rw [← Contractions.nilEquiv.symm.sum_comp]
|
||||
simp only [Finset.univ_unique, PUnit.default_eq_unit, Contractions.nilEquiv, Equiv.coe_fn_symm_mk,
|
||||
Finset.sum_const, Finset.card_singleton, one_smul]
|
||||
dsimp [Contractions.normalize, Contractions.toCenterTerm]
|
||||
simp [ofListLift_empty]
|
||||
|
||||
lemma static_wick_cons {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2)
|
||||
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
|
||||
[IsTrans ((i : I) × f i) le1] [IsTotal ((i : I) × f i) le1]
|
||||
{A : Type} [Semiring A] [Algebra ℂ A] (r : List I) (a : I)
|
||||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F]
|
||||
(S : Contractions.Splitting f le1)
|
||||
(ih : F (ofListLift f r 1) =
|
||||
∑ c : Contractions r, c.toCenterTerm f q le1 F S * F (koszulOrder le1 (fun i => q i.fst)
|
||||
(ofListLift f c.normalize 1))) :
|
||||
F (ofListLift f (a :: r) 1) = ∑ c : Contractions (a :: r),
|
||||
c.toCenterTerm f q le1 F S *
|
||||
F (koszulOrder le1 (fun i => q i.fst) (ofListLift f c.normalize 1)) := by
|
||||
rw [ofListLift_cons_eq_ofListLift, map_mul, ih, Finset.mul_sum,
|
||||
← Contractions.consEquiv.symm.sum_comp]
|
||||
erw [Finset.sum_sigma]
|
||||
congr
|
||||
funext c
|
||||
have hb := S.h𝓑 a
|
||||
rw [← mul_assoc]
|
||||
have hi := c.toCenterTerm_center f q le1 F S
|
||||
rw [Subalgebra.mem_center_iff] at hi
|
||||
rw [hi, mul_assoc, ← map_mul, hb, add_mul, map_add]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
lhs
|
||||
rw [ofList_eq_smul_one]
|
||||
rw [Algebra.smul_mul_assoc]
|
||||
rw [ofList_singleton]
|
||||
rw [mul_koszulOrder_le]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
lhs
|
||||
rw [← map_smul, ← Algebra.smul_mul_assoc]
|
||||
rw [← ofList_singleton, ← ofList_eq_smul_one]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
rhs
|
||||
rw [ofList_eq_smul_one, Algebra.smul_mul_assoc, map_smul]
|
||||
rw [le_all_mul_koszulOrder_ofListLift_expand]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
rhs
|
||||
rw [smul_add, Finset.smul_sum]
|
||||
rw [← map_smul, ← map_smul, ← Algebra.smul_mul_assoc, ← ofList_eq_smul_one]
|
||||
rhs
|
||||
rhs
|
||||
intro n
|
||||
rw [← Algebra.smul_mul_assoc, smul_comm, ← map_smul, ← LinearMap.map_smul₂,
|
||||
← ofList_eq_smul_one]
|
||||
rw [← add_assoc, ← map_add, ← map_add, ← add_mul, ← hb, ← ofListLift_cons_eq_ofListLift, mul_add]
|
||||
rw [Fintype.sum_option]
|
||||
congr 1
|
||||
rw [Finset.mul_sum]
|
||||
congr
|
||||
funext n
|
||||
rw [← mul_assoc]
|
||||
rfl
|
||||
exact S.h𝓑p a
|
||||
exact S.h𝓑n a
|
||||
|
||||
theorem static_wick_theorem {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2)
|
||||
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1] [IsTrans ((i : I) × f i) le1]
|
||||
[IsTotal ((i : I) × f i) le1]
|
||||
{A : Type} [Semiring A] [Algebra ℂ A] (r : List I)
|
||||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F]
|
||||
(S : Contractions.Splitting f le1) :
|
||||
F (ofListLift f r 1) = ∑ c : Contractions r, c.toCenterTerm f q le1 F S *
|
||||
F (koszulOrder le1 (fun i => q i.fst) (ofListLift f c.normalize 1)) := by
|
||||
induction r with
|
||||
| nil => exact static_wick_nil q le1 F S
|
||||
| cons a r ih => exact static_wick_cons q le1 r a F S ih
|
||||
|
||||
end
|
||||
end Wick
|
|
@ -3,7 +3,7 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.Koszul.OfList
|
||||
import HepLean.PerturbationTheory.Wick.OfList
|
||||
/-!
|
||||
|
||||
# Koszul signs and ordering for lists and algebras
|
||||
|
@ -193,7 +193,7 @@ lemma superCommute_ofList_mul {I : Type} (q : I → Fin 2) (la lb lc : List I) (
|
|||
mul_neg, smul_add, one_smul, smul_neg]
|
||||
abel
|
||||
|
||||
def superCommuteTake {I : Type} (q : I → Fin 2) (la lb : List I) (xa xb : ℂ) (n : ℕ)
|
||||
def superCommuteSplit {I : Type} (q : I → Fin 2) (la lb : List I) (xa xb : ℂ) (n : ℕ)
|
||||
(hn : n < lb.length) : FreeAlgebra ℂ I :=
|
||||
superCommuteCoef q la (List.take n lb) •
|
||||
ofList (List.take n lb) 1 *
|
||||
|
@ -212,7 +212,7 @@ lemma superCommute_ofList_cons {I : Type} (q : I → Fin 2) (la lb : List I) (xa
|
|||
|
||||
lemma superCommute_ofList_sum {I : Type} (q : I → Fin 2) (la lb : List I) (xa xb : ℂ) :
|
||||
superCommute q (ofList la xa) (ofList lb xb) =
|
||||
∑ (n : Fin lb.length), superCommuteTake q la lb xa xb n n.prop := by
|
||||
∑ (n : Fin lb.length), superCommuteSplit q la lb xa xb n n.prop := by
|
||||
induction lb with
|
||||
| nil =>
|
||||
simp only [superCommute_ofList_ofList, List.append_nil, Fin.isValue, grade_empty, zero_ne_one,
|
||||
|
@ -223,8 +223,8 @@ lemma superCommute_ofList_sum {I : Type} (q : I → Fin 2) (la lb : List I) (xa
|
|||
| cons b lb ih =>
|
||||
rw [superCommute_ofList_cons, ih]
|
||||
have h0 : ((superCommute q) (ofList la xa)) (FreeAlgebra.ι ℂ b) * ofList lb xb =
|
||||
superCommuteTake q la (b :: lb) xa xb 0 (Nat.zero_lt_succ lb.length) := by
|
||||
simp [superCommuteTake, superCommuteCoef_empty, ofList_empty]
|
||||
superCommuteSplit q la (b :: lb) xa xb 0 (Nat.zero_lt_succ lb.length) := by
|
||||
simp [superCommuteSplit, superCommuteCoef_empty, ofList_empty]
|
||||
rw [h0]
|
||||
have hf (f : Fin (b :: lb).length → FreeAlgebra ℂ I) : ∑ n, f n = f ⟨0,
|
||||
Nat.zero_lt_succ lb.length⟩ + ∑ n, f (Fin.succ n) := by
|
||||
|
@ -234,7 +234,7 @@ lemma superCommute_ofList_sum {I : Type} (q : I → Fin 2) (la lb : List I) (xa
|
|||
rw [Finset.mul_sum]
|
||||
congr
|
||||
funext n
|
||||
simp only [superCommuteTake, Fin.eta, List.get_eq_getElem, Algebra.smul_mul_assoc,
|
||||
simp only [superCommuteSplit, Fin.eta, List.get_eq_getElem, Algebra.smul_mul_assoc,
|
||||
Algebra.mul_smul_comm, smul_smul, List.length_cons, Fin.val_succ, List.take_succ_cons,
|
||||
List.getElem_cons_succ, List.drop_succ_cons]
|
||||
congr 1
|
||||
|
@ -258,7 +258,7 @@ lemma ofList_ofList_superCommute {I : Type} (q : I → Fin 2) (la lb : List I) (
|
|||
rw [superCommute_ofList_ofList_superCommuteCoef]
|
||||
abel
|
||||
|
||||
lemma ofListM_ofList_superCommute' {I : Type}
|
||||
lemma ofListLift_ofList_superCommute' {I : Type}
|
||||
(q : I → Fin 2) (l : List I) (r : List I) (x y : ℂ) :
|
||||
ofList r y * ofList l x = superCommuteCoef q l r • (ofList l x * ofList r y)
|
||||
- superCommuteCoef q l r • superCommute q (ofList l x) (ofList r y) := by
|
||||
|
@ -268,5 +268,186 @@ lemma ofListM_ofList_superCommute' {I : Type}
|
|||
· simp [hq, superCommuteCoef]
|
||||
· simp [hq]
|
||||
|
||||
|
||||
lemma superCommute_ofList_ofListLift {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ℂ) :
|
||||
superCommute (fun i => q i.1) (ofList l x) (ofListLift f r y) =
|
||||
ofList l x * ofListLift f r y +
|
||||
(if grade (fun i => q i.1) l = 1 ∧ grade q r = 1 then
|
||||
ofListLift f r y * ofList l x else - ofListLift f r y * ofList l x) := by
|
||||
conv_lhs => rw [ofListLift_expand]
|
||||
rw [map_sum]
|
||||
conv_rhs =>
|
||||
lhs
|
||||
rw [ofListLift_expand, Finset.mul_sum]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
rhs
|
||||
rw [ofListLift_expand, ← Finset.sum_neg_distrib, Finset.sum_mul]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
lhs
|
||||
rw [ofListLift_expand, Finset.sum_mul]
|
||||
rw [← Finset.sum_ite_irrel]
|
||||
rw [← Finset.sum_add_distrib]
|
||||
congr
|
||||
funext a
|
||||
rw [superCommute_ofList_ofList]
|
||||
congr 1
|
||||
· exact ofList_pair l a.toList x y
|
||||
congr 1
|
||||
· simp
|
||||
· exact ofList_pair a.toList l y x
|
||||
· rw [ofList_pair]
|
||||
simp only [neg_mul]
|
||||
|
||||
lemma superCommute_ofList_ofListLift_superCommuteLiftCoef {I : Type} {f : I → Type}
|
||||
[∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ℂ) :
|
||||
superCommute (fun i => q i.1) (ofList l x) (ofListLift f r y) =
|
||||
ofList l x * ofListLift f r y - superCommuteLiftCoef q l r • ofListLift f r y * ofList l x := by
|
||||
rw [superCommute_ofList_ofListLift, superCommuteLiftCoef]
|
||||
by_cases hq : grade (fun i => q i.fst) l = 1 ∧ grade q r = 1
|
||||
· simp [hq]
|
||||
· simp only [Fin.isValue, hq, ↓reduceIte, neg_mul, one_smul]
|
||||
abel
|
||||
|
||||
lemma ofList_ofListLift_superCommute {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ℂ) :
|
||||
ofList l x * ofListLift f r y = superCommuteLiftCoef q l r • ofListLift f r y * ofList l x
|
||||
+ superCommute (fun i => q i.1) (ofList l x) (ofListLift f r y) := by
|
||||
rw [superCommute_ofList_ofListLift_superCommuteLiftCoef]
|
||||
abel
|
||||
|
||||
lemma ofListLift_ofList_superCommute {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ℂ) :
|
||||
ofListLift f r y * ofList l x = superCommuteLiftCoef q l r • (ofList l x * ofListLift f r y)
|
||||
- superCommuteLiftCoef q l r • superCommute (fun i => q i.1) (ofList l x) (ofListLift f r y) := by
|
||||
rw [ofList_ofListLift_superCommute, superCommuteLiftCoef]
|
||||
by_cases hq : grade (fun i => q i.fst) l = 1 ∧ grade q r = 1
|
||||
· simp [hq]
|
||||
· simp [hq]
|
||||
|
||||
lemma superCommuteLiftCoef_append {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (l : List (Σ i, f i)) (r1 r2 : List I) :
|
||||
superCommuteLiftCoef q l (r1 ++ r2) = superCommuteLiftCoef q l r1 * superCommuteLiftCoef q l r2 := by
|
||||
simp only [superCommuteLiftCoef, Fin.isValue, grade_append, ite_eq_right_iff, zero_ne_one, imp_false,
|
||||
mul_ite, mul_neg, mul_one]
|
||||
by_cases hla : grade (fun i => q i.1) l = 1
|
||||
· by_cases hlb : grade q r1 = 1
|
||||
· by_cases hlc : grade q r2 = 1
|
||||
· simp [hlc, hlb, hla]
|
||||
· have hc : grade q r2 = 0 := by
|
||||
omega
|
||||
simp [hc, hlb, hla]
|
||||
· have hb : grade q r1 = 0 := by
|
||||
omega
|
||||
by_cases hlc : grade q r2 = 1
|
||||
· simp [hlc, hb]
|
||||
· have hc : grade q r2 = 0 := by
|
||||
omega
|
||||
simp [hc, hb]
|
||||
· have ha : grade (fun i => q i.1) l = 0 := by
|
||||
omega
|
||||
simp [ha]
|
||||
|
||||
def superCommuteLiftSplit {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ℂ) (n : ℕ)
|
||||
(hn : n < r.length) : FreeAlgebra ℂ (Σ i, f i) :=
|
||||
superCommuteLiftCoef q l (List.take n r) •
|
||||
(ofListLift f (List.take n r) 1 *
|
||||
superCommute (fun i => q i.1) (ofList l x) (sumFiber f (FreeAlgebra.ι ℂ (r.get ⟨n, hn⟩)))
|
||||
* ofListLift f (List.drop (n + 1) r) y)
|
||||
|
||||
lemma superCommute_ofList_ofListLift_cons {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ℂ) (b1 : I) :
|
||||
superCommute (fun i => q i.1) (ofList l x) (ofListLift f (b1 :: r) y) =
|
||||
superCommute (fun i => q i.1) (ofList l x) (sumFiber f (FreeAlgebra.ι ℂ b1))
|
||||
* ofListLift f r y + superCommuteLiftCoef q l [b1] •
|
||||
(ofListLift f [b1] 1) * superCommute (fun i => q i.1) (ofList l x) (ofListLift f r y) := by
|
||||
rw [ofListLift_cons]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
rw [ofListLift_expand]
|
||||
rw [Finset.mul_sum]
|
||||
rw [map_sum]
|
||||
trans ∑ (n : CreateAnnilateSect f r), ∑ j : f b1, ((superCommute fun i => q i.fst) (ofList l x))
|
||||
((FreeAlgebra.ι ℂ ⟨b1, j⟩) * ofList n.toList y)
|
||||
· apply congrArg
|
||||
funext n
|
||||
rw [← map_sum]
|
||||
congr
|
||||
rw [Finset.sum_mul]
|
||||
conv_rhs =>
|
||||
lhs
|
||||
rw [ofListLift_expand, Finset.mul_sum]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
rhs
|
||||
rw [ofListLift_expand]
|
||||
rw [map_sum]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
rw [Finset.mul_sum]
|
||||
rw [← Finset.sum_add_distrib]
|
||||
congr
|
||||
funext n
|
||||
rw [sumFiber_ι, map_sum, Finset.sum_mul]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
rw [ofListLift_singleton]
|
||||
rw [Finset.smul_sum, Finset.sum_mul]
|
||||
rw [← Finset.sum_add_distrib]
|
||||
congr
|
||||
funext b
|
||||
trans ((superCommute fun i => q i.fst) (ofList l x)) (ofList (⟨b1, b⟩ :: n.toList) y)
|
||||
· congr
|
||||
rw [ofList_cons_eq_ofList]
|
||||
rw [ofList_singleton]
|
||||
rw [superCommute_ofList_cons]
|
||||
congr
|
||||
rw [ofList_singleton]
|
||||
simp
|
||||
|
||||
lemma superCommute_ofList_ofListLift_sum {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ℂ) :
|
||||
superCommute (fun i => q i.1) (ofList l x) (ofListLift f r y) =
|
||||
∑ (n : Fin r.length), superCommuteLiftSplit q l r x y n n.prop := by
|
||||
induction r with
|
||||
| nil =>
|
||||
simp only [superCommute_ofList_ofListLift, Fin.isValue, grade_empty, zero_ne_one, and_false,
|
||||
↓reduceIte, neg_mul, List.length_nil, Finset.univ_eq_empty, Finset.sum_empty]
|
||||
rw [ofListLift, ofList_empty']
|
||||
simp
|
||||
| cons b r ih =>
|
||||
rw [superCommute_ofList_ofListLift_cons]
|
||||
have h0 : ((superCommute fun i => q i.fst) (ofList l x))
|
||||
((sumFiber f) (FreeAlgebra.ι ℂ b)) * ofListLift f r y =
|
||||
superCommuteLiftSplit q l (b :: r) x y 0 (Nat.zero_lt_succ r.length) := by
|
||||
simp [superCommuteLiftSplit, superCommuteLiftCoef_empty, ofListLift_empty]
|
||||
rw [h0]
|
||||
have hf (g : Fin (b :: r).length → FreeAlgebra ℂ ((i : I) × f i)) : ∑ n, g n = g ⟨0,
|
||||
Nat.zero_lt_succ r.length⟩ + ∑ n, g (Fin.succ n) := by
|
||||
exact Fin.sum_univ_succAbove g ⟨0, Nat.zero_lt_succ r.length⟩
|
||||
rw [hf]
|
||||
congr
|
||||
rw [ih]
|
||||
rw [Finset.mul_sum]
|
||||
congr
|
||||
funext n
|
||||
simp only [superCommuteLiftSplit, Fin.eta, List.get_eq_getElem, Algebra.mul_smul_comm,
|
||||
Algebra.smul_mul_assoc, smul_smul, List.length_cons, Fin.val_succ, List.take_succ_cons,
|
||||
List.getElem_cons_succ, List.drop_succ_cons]
|
||||
congr 1
|
||||
· rw [mul_comm, ← superCommuteLiftCoef_append]
|
||||
rfl
|
||||
· simp only [← mul_assoc, mul_eq_mul_right_iff]
|
||||
apply Or.inl
|
||||
apply Or.inl
|
||||
rw [ofListLift, ofListLift, ofListLift]
|
||||
rw [← map_mul]
|
||||
congr
|
||||
rw [← ofList_pair, one_mul]
|
||||
rfl
|
||||
end
|
||||
end Wick
|
Loading…
Add table
Add a link
Reference in a new issue