refactor: Reorganize files
This commit is contained in:
parent
63c4cabdf4
commit
c993de36f6
16 changed files with 1408 additions and 1310 deletions
235
HepLean/PerturbationTheory/Wick/Signs/KoszulSign.lean
Normal file
235
HepLean/PerturbationTheory/Wick/Signs/KoszulSign.lean
Normal file
|
@ -0,0 +1,235 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.Algebra.FreeAlgebra
|
||||
import Mathlib.Algebra.Lie.OfAssociative
|
||||
import Mathlib.Analysis.Complex.Basic
|
||||
import HepLean.PerturbationTheory.Wick.Signs.KoszulSignInsert
|
||||
/-!
|
||||
|
||||
# Koszul sign insert
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
|
||||
open HepLean.List
|
||||
|
||||
/-- Gives a factor of `- 1` for every fermion-fermion (`q` is `1`) crossing that occurs when sorting
|
||||
a list of based on `r`. -/
|
||||
def koszulSign {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2) :
|
||||
List I → ℂ
|
||||
| [] => 1
|
||||
| a :: l => koszulSignInsert r q a l * koszulSign r q l
|
||||
|
||||
|
||||
lemma koszulSign_mul_self {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2)
|
||||
(l : List I) : koszulSign r q l * koszulSign r q l = 1 := by
|
||||
induction l with
|
||||
| nil => simp [koszulSign]
|
||||
| cons a l ih =>
|
||||
simp only [koszulSign]
|
||||
trans (koszulSignInsert r q a l * koszulSignInsert r q a l) *
|
||||
(koszulSign r q l * koszulSign r q l)
|
||||
ring
|
||||
rw [ih]
|
||||
rw [koszulSignInsert_mul_self, mul_one]
|
||||
|
||||
@[simp]
|
||||
lemma koszulSign_freeMonoid_of {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2)
|
||||
(i : I) : koszulSign r q (FreeMonoid.of i) = 1 := by
|
||||
change koszulSign r q [i] = 1
|
||||
simp only [koszulSign, mul_one]
|
||||
rfl
|
||||
|
||||
lemma koszulSignInsert_erase_boson {I : Type} (q : I → Fin 2) (le1 :I → I → Prop)
|
||||
[DecidableRel le1] (r0 : I) :
|
||||
(r : List I) → (n : Fin r.length) → (heq : q (r.get n) = 0) →
|
||||
koszulSignInsert le1 q r0 (r.eraseIdx n) = koszulSignInsert le1 q r0 r
|
||||
| [], _, _ => by
|
||||
simp
|
||||
| r1 :: r, ⟨0, h⟩, hr => by
|
||||
simp only [List.eraseIdx_zero, List.tail_cons]
|
||||
simp only [List.length_cons, Fin.zero_eta, List.get_eq_getElem, Fin.val_zero,
|
||||
List.getElem_cons_zero, Fin.isValue] at hr
|
||||
rw [koszulSignInsert]
|
||||
simp [hr]
|
||||
| r1 :: r, ⟨n + 1, h⟩, hr => by
|
||||
simp only [List.eraseIdx_cons_succ]
|
||||
rw [koszulSignInsert, koszulSignInsert]
|
||||
rw [koszulSignInsert_erase_boson q le1 r0 r ⟨n, Nat.succ_lt_succ_iff.mp h⟩ hr]
|
||||
|
||||
lemma koszulSign_erase_boson {I : Type} (q : I → Fin 2) (le1 :I → I → Prop)
|
||||
[DecidableRel le1] :
|
||||
(r : List I) → (n : Fin r.length) → (heq : q (r.get n) = 0) →
|
||||
koszulSign le1 q (r.eraseIdx n) = koszulSign le1 q r
|
||||
| [], _ => by
|
||||
simp
|
||||
| r0 :: r, ⟨0, h⟩ => by
|
||||
simp only [List.length_cons, Fin.zero_eta, List.get_eq_getElem, Fin.val_zero,
|
||||
List.getElem_cons_zero, Fin.isValue, List.eraseIdx_zero, List.tail_cons, koszulSign]
|
||||
intro h
|
||||
rw [koszulSignInsert_boson]
|
||||
simp only [one_mul]
|
||||
exact h
|
||||
| r0 :: r, ⟨n + 1, h⟩ => by
|
||||
simp only [List.length_cons, List.get_eq_getElem, List.getElem_cons_succ, Fin.isValue,
|
||||
List.eraseIdx_cons_succ]
|
||||
intro h'
|
||||
rw [koszulSign, koszulSign]
|
||||
rw [koszulSign_erase_boson q le1 r ⟨n, Nat.succ_lt_succ_iff.mp h⟩]
|
||||
congr 1
|
||||
rw [koszulSignInsert_erase_boson q le1 r0 r ⟨n, Nat.succ_lt_succ_iff.mp h⟩ h']
|
||||
exact h'
|
||||
|
||||
|
||||
|
||||
def koszulSignCons {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1] (r0 r1 : I) :
|
||||
ℂ :=
|
||||
if le1 r0 r1 then 1 else
|
||||
if q r0 = 1 ∧ q r1 = 1 then -1 else 1
|
||||
|
||||
lemma koszulSignCons_eq_superComuteCoef {I : Type} (q : I → Fin 2) (le1 : I → I → Prop)
|
||||
[DecidableRel le1] (r0 r1 : I) : koszulSignCons q le1 r0 r1 =
|
||||
if le1 r0 r1 then 1 else superCommuteCoef q [r0] [r1] := by
|
||||
simp only [koszulSignCons, Fin.isValue, superCommuteCoef, grade, ite_eq_right_iff, zero_ne_one,
|
||||
imp_false]
|
||||
congr 1
|
||||
by_cases h0 : q r0 = 1
|
||||
· by_cases h1 : q r1 = 1
|
||||
· simp [h0, h1]
|
||||
· have h1 : q r1 = 0 := by omega
|
||||
simp [h0, h1]
|
||||
· have h0 : q r0 = 0 := by omega
|
||||
by_cases h1 : q r1 = 1
|
||||
· simp [h0, h1]
|
||||
· have h1 : q r1 = 0 := by omega
|
||||
simp [h0, h1]
|
||||
|
||||
lemma koszulSignInsert_cons {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
[IsTotal I le1] [IsTrans I le1] (r0 r1 : I) (r : List I) :
|
||||
koszulSignInsert le1 q r0 (r1 :: r) = (koszulSignCons q le1 r0 r1) *
|
||||
koszulSignInsert le1 q r0 r := by
|
||||
simp [koszulSignInsert, koszulSignCons]
|
||||
|
||||
lemma koszulSign_insertIdx {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
(i : I) [IsTotal I le1] [IsTrans I le1] : (r : List I) → (n : ℕ) → (hn : n ≤ r.length) →
|
||||
koszulSign le1 q (List.insertIdx n i r) = insertSign q n i r
|
||||
* koszulSign le1 q r
|
||||
* insertSign q (insertionSortEquiv le1 (List.insertIdx n i r) ⟨n, by
|
||||
rw [List.length_insertIdx _ _ hn]
|
||||
omega⟩) i
|
||||
(List.insertionSort le1 (List.insertIdx n i r))
|
||||
| [], 0, h => by
|
||||
simp [koszulSign, insertSign, superCommuteCoef, koszulSignInsert]
|
||||
| [], n + 1, h => by
|
||||
simp at h
|
||||
| r0 :: r, 0, h => by
|
||||
simp only [List.insertIdx_zero, List.insertionSort, List.length_cons, Fin.zero_eta]
|
||||
rw [koszulSign]
|
||||
trans koszulSign le1 q (r0 :: r) * koszulSignInsert le1 q i (r0 :: r)
|
||||
ring
|
||||
simp only [insertionSortEquiv, List.length_cons, Nat.succ_eq_add_one, List.insertionSort,
|
||||
orderedInsertEquiv, OrderIso.toEquiv_symm, Fin.symm_castOrderIso, HepLean.Fin.equivCons_trans,
|
||||
Equiv.trans_apply, HepLean.Fin.equivCons_zero, HepLean.Fin.finExtractOne_apply_eq,
|
||||
Fin.isValue, HepLean.Fin.finExtractOne_symm_inl_apply, RelIso.coe_fn_toEquiv,
|
||||
Fin.castOrderIso_apply, Fin.cast_mk, Fin.eta]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
rhs
|
||||
rw [orderedInsert_eq_insertIdx_orderedInsertPos]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
rw [← insertSign_insert]
|
||||
change insertSign q (↑(orderedInsertPos le1 ((List.insertionSort le1 (r0 :: r))) i)) i
|
||||
(List.insertionSort le1 (r0 :: r))
|
||||
rw [← koszulSignInsert_eq_insertSign q le1]
|
||||
rw [insertSign_zero]
|
||||
simp
|
||||
| r0 :: r, n + 1, h => by
|
||||
conv_lhs =>
|
||||
rw [List.insertIdx_succ_cons]
|
||||
rw [koszulSign]
|
||||
rw [koszulSign_insertIdx]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
simp only [List.insertIdx_succ_cons]
|
||||
simp only [List.insertionSort, List.length_cons, insertionSortEquiv, Nat.succ_eq_add_one,
|
||||
Equiv.trans_apply, HepLean.Fin.equivCons_succ]
|
||||
erw [orderedInsertEquiv_fin_succ]
|
||||
simp only [Fin.eta, Fin.coe_cast]
|
||||
rhs
|
||||
rw [orderedInsert_eq_insertIdx_orderedInsertPos]
|
||||
conv_rhs =>
|
||||
lhs
|
||||
rw [insertSign_succ_cons, koszulSign]
|
||||
ring_nf
|
||||
conv_lhs =>
|
||||
lhs
|
||||
rw [mul_assoc, mul_comm]
|
||||
rw [mul_assoc]
|
||||
conv_rhs =>
|
||||
rw [mul_assoc, mul_assoc]
|
||||
congr 1
|
||||
let rs := (List.insertionSort le1 (List.insertIdx n i r))
|
||||
have hnsL : n < (List.insertIdx n i r).length := by
|
||||
rw [List.length_insertIdx _ _]
|
||||
simp only [List.length_cons, add_le_add_iff_right] at h
|
||||
omega
|
||||
exact Nat.le_of_lt_succ h
|
||||
let ni : Fin rs.length := (insertionSortEquiv le1 (List.insertIdx n i r))
|
||||
⟨n, hnsL⟩
|
||||
let nro : Fin (rs.length + 1) :=
|
||||
⟨↑(orderedInsertPos le1 rs r0), orderedInsertPos_lt_length le1 rs r0⟩
|
||||
rw [koszulSignInsert_insertIdx, koszulSignInsert_cons]
|
||||
trans koszulSignInsert le1 q r0 r * (koszulSignCons q le1 r0 i *insertSign q ni i rs)
|
||||
· simp only [rs, ni]
|
||||
ring
|
||||
trans koszulSignInsert le1 q r0 r * (superCommuteCoef q [i] [r0] *
|
||||
insertSign q (nro.succAbove ni) i (List.insertIdx nro r0 rs))
|
||||
swap
|
||||
· simp only [rs, nro, ni]
|
||||
ring
|
||||
congr 1
|
||||
simp only [Fin.succAbove]
|
||||
have hns : rs.get ni = i := by
|
||||
simp only [Fin.eta, rs]
|
||||
rw [← insertionSortEquiv_get]
|
||||
simp only [Function.comp_apply, Equiv.symm_apply_apply, List.get_eq_getElem, ni]
|
||||
simp_all only [List.length_cons, add_le_add_iff_right, List.getElem_insertIdx_self]
|
||||
have hms : (List.orderedInsert le1 r0 rs).get ⟨nro, by simp⟩ = r0 := by
|
||||
simp [nro]
|
||||
have hc1 : ni.castSucc < nro → ¬ le1 r0 i := by
|
||||
intro hninro
|
||||
rw [← hns]
|
||||
exact lt_orderedInsertPos_rel le1 r0 rs ni hninro
|
||||
have hc2 : ¬ ni.castSucc < nro → le1 r0 i := by
|
||||
intro hninro
|
||||
rw [← hns]
|
||||
refine gt_orderedInsertPos_rel le1 r0 rs ?_ ni hninro
|
||||
exact List.sorted_insertionSort le1 (List.insertIdx n i r)
|
||||
by_cases hn : ni.castSucc < nro
|
||||
· simp only [hn, ↓reduceIte, Fin.coe_castSucc]
|
||||
rw [insertSign_insert_gt]
|
||||
swap
|
||||
· exact hn
|
||||
congr 1
|
||||
rw [koszulSignCons_eq_superComuteCoef]
|
||||
simp only [hc1 hn, ↓reduceIte]
|
||||
rw [superCommuteCoef_comm]
|
||||
· simp only [hn, ↓reduceIte, Fin.val_succ]
|
||||
rw [insertSign_insert_lt]
|
||||
rw [← mul_assoc]
|
||||
congr 1
|
||||
rw [superCommuteCoef_mul_self]
|
||||
rw [koszulSignCons]
|
||||
simp only [hc2 hn, ↓reduceIte]
|
||||
exact Nat.le_of_not_lt hn
|
||||
exact Nat.le_of_lt_succ (orderedInsertPos_lt_length le1 rs r0)
|
||||
· exact Nat.le_of_lt_succ h
|
||||
· exact Nat.le_of_lt_succ h
|
||||
|
||||
|
||||
end Wick
|
Loading…
Add table
Add a link
Reference in a new issue