refactor: Reorganize files
This commit is contained in:
parent
63c4cabdf4
commit
c993de36f6
16 changed files with 1408 additions and 1310 deletions
91
HepLean/PerturbationTheory/Wick/Signs/StaticWickCoef.lean
Normal file
91
HepLean/PerturbationTheory/Wick/Signs/StaticWickCoef.lean
Normal file
|
@ -0,0 +1,91 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.Algebra.FreeAlgebra
|
||||
import Mathlib.Algebra.Lie.OfAssociative
|
||||
import Mathlib.Analysis.Complex.Basic
|
||||
import HepLean.PerturbationTheory.Wick.Signs.KoszulSign
|
||||
/-!
|
||||
|
||||
# Koszul sign insert
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
|
||||
open HepLean.List
|
||||
|
||||
def superCommuteCoefLE {I : Type} (q : I → Fin 2) (le1 :I → I → Prop) (r : List I)
|
||||
[DecidableRel le1] (i : I) (n : Fin r.length) : ℂ :=
|
||||
koszulSign le1 q r *
|
||||
superCommuteCoef q [i] (List.take (↑((HepLean.List.insertionSortEquiv le1 r) n))
|
||||
(List.insertionSort le1 r)) *
|
||||
koszulSign le1 q (r.eraseIdx ↑n)
|
||||
|
||||
lemma superCommuteCoefLE_eq_q {I : Type} (q : I → Fin 2) (le1 :I → I → Prop) (r : List I)
|
||||
[DecidableRel le1] (i : I) (n : Fin r.length)
|
||||
(hq : q i = q (r.get n)) :
|
||||
superCommuteCoefLE q le1 r i n =
|
||||
koszulSign le1 q r *
|
||||
superCommuteCoef q [r.get n] (List.take (↑(insertionSortEquiv le1 r n))
|
||||
(List.insertionSort le1 r)) *
|
||||
koszulSign le1 q (r.eraseIdx ↑n) := by
|
||||
simp [superCommuteCoefLE, superCommuteCoef, grade, hq]
|
||||
|
||||
|
||||
lemma insertIdx_eraseIdx {I : Type} :
|
||||
(n : ℕ) → (r : List I) → (hn : n < r.length) →
|
||||
List.insertIdx n (r.get ⟨n, hn⟩) (r.eraseIdx n) = r
|
||||
| n, [], hn => by
|
||||
simp at hn
|
||||
| 0, r0 :: r, hn => by
|
||||
simp
|
||||
| n + 1, r0 :: r, hn => by
|
||||
simp only [List.length_cons, List.get_eq_getElem, List.getElem_cons_succ,
|
||||
List.eraseIdx_cons_succ, List.insertIdx_succ_cons, List.cons.injEq, true_and]
|
||||
exact insertIdx_eraseIdx n r _
|
||||
|
||||
lemma superCommuteCoefLE_eq_get {I : Type} (q : I → Fin 2) (le1 :I → I → Prop) (r : List I)
|
||||
[DecidableRel le1] [IsTotal I le1] [IsTrans I le1] (i : I) (n : Fin r.length)
|
||||
(heq : q i = q (r.get n)) :
|
||||
superCommuteCoefLE q le1 r i n = superCommuteCoef q [r.get n] (r.take n) := by
|
||||
rw [superCommuteCoefLE_eq_q]
|
||||
let r' := r.eraseIdx ↑n
|
||||
have hr : List.insertIdx n (r.get n) (r.eraseIdx n) = r := by
|
||||
exact insertIdx_eraseIdx n.1 r n.prop
|
||||
conv_lhs =>
|
||||
lhs
|
||||
lhs
|
||||
rw [← hr]
|
||||
rw [koszulSign_insertIdx q le1 (r.get n) ((r.eraseIdx ↑n)) n (by
|
||||
rw [List.length_eraseIdx]
|
||||
simp only [Fin.is_lt, ↓reduceIte]
|
||||
omega)]
|
||||
rhs
|
||||
rhs
|
||||
rw [hr]
|
||||
conv_lhs =>
|
||||
lhs
|
||||
lhs
|
||||
rhs
|
||||
enter [2, 1, 1]
|
||||
rw [insertionSortEquiv_congr _ _ hr]
|
||||
simp only [List.get_eq_getElem, Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
|
||||
Fin.cast_mk, Fin.eta, Fin.coe_cast]
|
||||
conv_lhs =>
|
||||
lhs
|
||||
rw [mul_assoc]
|
||||
rhs
|
||||
rw [insertSign]
|
||||
rw [superCommuteCoef_mul_self]
|
||||
simp only [mul_one]
|
||||
rw [mul_assoc]
|
||||
rw [koszulSign_mul_self]
|
||||
simp only [mul_one]
|
||||
rw [insertSign_eraseIdx]
|
||||
rfl
|
||||
exact heq
|
||||
|
||||
end Wick
|
Loading…
Add table
Add a link
Reference in a new issue