refactor: Lint
This commit is contained in:
parent
1e8efdb16a
commit
c9c7b25ea8
9 changed files with 946 additions and 696 deletions
373
HepLean/Tensors/ComplexLorentz/PauliContr.lean
Normal file
373
HepLean/Tensors/ComplexLorentz/PauliContr.lean
Normal file
|
@ -0,0 +1,373 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.ComplexLorentz.PauliLower
|
||||
import HepLean.Tensors.ComplexLorentz.Lemmas
|
||||
/-!
|
||||
|
||||
## Contractiong of indices of Pauli matrix.
|
||||
|
||||
The main result of this file is `pauliMatrix_contract_pauliMatrix` which states that
|
||||
`η_{μν} σ^{μ α dot β} σ^{ν α' dot β'} = 2 ε^{αα'} ε^{dot β dot β'}`.
|
||||
|
||||
The current way this result is proved is by using tensor tree manipulations.
|
||||
There is likely a more direct path to this result.
|
||||
|
||||
-/
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
open Matrix
|
||||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open TensorTree
|
||||
open OverColor.Discrete
|
||||
noncomputable section
|
||||
|
||||
namespace Fermion
|
||||
open complexLorentzTensor
|
||||
|
||||
/-- The map to colors one gets when contracting the 4-vector indices pauli matrices. -/
|
||||
def pauliMatrixContrPauliMatrixMap := ((Sum.elim
|
||||
((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
|
||||
Fin.succAbove 0 ∘ Fin.succAbove 1) ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
|
||||
Fin.succAbove 0 ∘ Fin.succAbove 2)
|
||||
|
||||
lemma pauliMatrix_contr_lower_0_0_0 :
|
||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)) | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
|
||||
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||||
/- Simplifying. -/
|
||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||||
congr 1
|
||||
· congr 1
|
||||
funext k
|
||||
fin_cases k <;> rfl
|
||||
· congr 1
|
||||
funext k
|
||||
fin_cases k <;> rfl
|
||||
|
||||
lemma pauliMatrix_contr_lower_0_1_1 :
|
||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)) | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
||||
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||||
/- Simplifying. -/
|
||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||||
congr 1
|
||||
· congr 1
|
||||
funext k
|
||||
fin_cases k <;> rfl
|
||||
· congr 1
|
||||
funext k
|
||||
fin_cases k <;> rfl
|
||||
|
||||
lemma pauliMatrix_contr_lower_1_0_1 :
|
||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)) | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||||
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||||
/- Simplifying. -/
|
||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||||
congr 1
|
||||
· congr 1
|
||||
funext k
|
||||
fin_cases k <;> rfl
|
||||
· congr 1
|
||||
funext k
|
||||
fin_cases k <;> rfl
|
||||
|
||||
lemma pauliMatrix_contr_lower_1_1_0 :
|
||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)) | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
||||
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||||
/- Simplifying. -/
|
||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||||
congr 1
|
||||
· congr 1
|
||||
funext k
|
||||
fin_cases k <;> rfl
|
||||
· congr 1
|
||||
funext k
|
||||
fin_cases k <;> rfl
|
||||
|
||||
lemma pauliMatrix_contr_lower_2_0_1 :
|
||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)) | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||||
+ (I) •
|
||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||||
/- Simplifying. -/
|
||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||||
congr 1
|
||||
· congr 2
|
||||
funext k
|
||||
fin_cases k <;> rfl
|
||||
· congr 2
|
||||
funext k
|
||||
fin_cases k <;> rfl
|
||||
|
||||
lemma pauliMatrix_contr_lower_2_1_0 :
|
||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)) | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
||||
+ (I) •
|
||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||||
/- Simplifying. -/
|
||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||||
congr 1
|
||||
· congr 2
|
||||
funext k
|
||||
fin_cases k <;> rfl
|
||||
· congr 2
|
||||
funext k
|
||||
fin_cases k <;> rfl
|
||||
|
||||
lemma pauliMatrix_contr_lower_3_0_0 :
|
||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)) | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
|
||||
+ (-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap
|
||||
(fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
|
||||
/- Simplifying. -/
|
||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||||
congr 1
|
||||
· congr 2
|
||||
funext k
|
||||
fin_cases k <;> rfl
|
||||
· congr 2
|
||||
funext k
|
||||
fin_cases k <;> rfl
|
||||
|
||||
lemma pauliMatrix_contr_lower_3_1_1 :
|
||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1)) | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
||||
+ (-1 : ℂ) •
|
||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
|
||||
/- Simplifying. -/
|
||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||||
congr 1
|
||||
· congr 2
|
||||
funext k
|
||||
fin_cases k <;> rfl
|
||||
· congr 2
|
||||
funext k
|
||||
fin_cases k <;> rfl
|
||||
|
||||
/-! TODO: Work out why `pauliMatrix_lower_basis_expand_prod'` is needed. -/
|
||||
/-- This lemma is exactly the same as `pauliMatrix_lower_basis_expand_prod'`.
|
||||
It is needed here for `pauliMatrix_contract_pauliMatrix_aux`. It is unclear why
|
||||
`pauliMatrix_lower_basis_expand_prod` does not work. -/
|
||||
private lemma pauliMatrix_lower_basis_expand_prod' {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||
(t : TensorTree complexLorentzTensor c) :
|
||||
(prod {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ t).tensor =
|
||||
((((tensorNode
|
||||
(basisVector pauliMatrixLowerMap fun | 0 => 0 | 1 => 0 | 2 => 0)).prod t).add
|
||||
(((tensorNode
|
||||
(basisVector pauliMatrixLowerMap fun | 0 => 0 | 1 => 1 | 2 => 1)).prod t).add
|
||||
((TensorTree.smul (-1) ((tensorNode
|
||||
(basisVector pauliMatrixLowerMap fun | 0 => 1 | 1 => 0 | 2 => 1)).prod t)).add
|
||||
((TensorTree.smul (-1) ((tensorNode
|
||||
(basisVector pauliMatrixLowerMap fun | 0 => 1 | 1 => 1 | 2 => 0)).prod t)).add
|
||||
((TensorTree.smul I ((tensorNode
|
||||
(basisVector pauliMatrixLowerMap fun | 0 => 2 | 1 => 0 | 2 => 1)).prod t)).add
|
||||
((TensorTree.smul (-I) ((tensorNode
|
||||
(basisVector pauliMatrixLowerMap fun | 0 => 2 | 1 => 1 | 2 => 0)).prod t)).add
|
||||
((TensorTree.smul (-1) ((tensorNode
|
||||
(basisVector pauliMatrixLowerMap fun | 0 => 3 | 1 => 0 | 2 => 0)).prod t)).add
|
||||
((tensorNode
|
||||
(basisVector pauliMatrixLowerMap fun | 0 => 3 | 1 => 1 | 2 => 1)).prod
|
||||
t))))))))).tensor := by
|
||||
exact pauliMatrix_lower_basis_expand_prod _
|
||||
|
||||
lemma pauliMatrix_contract_pauliMatrix_aux :
|
||||
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor
|
||||
= ((tensorNode
|
||||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
|
||||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)).add
|
||||
((tensorNode
|
||||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) +
|
||||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1)).add
|
||||
((TensorTree.smul (-1) (tensorNode
|
||||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) +
|
||||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0))).add
|
||||
((TensorTree.smul (-1) (tensorNode
|
||||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) +
|
||||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add
|
||||
((TensorTree.smul I (tensorNode
|
||||
((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) +
|
||||
I •
|
||||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0))).add
|
||||
((TensorTree.smul (-I) (tensorNode
|
||||
((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) +
|
||||
I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add
|
||||
((TensorTree.smul (-1) (tensorNode
|
||||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
|
||||
(-1 : ℂ) •
|
||||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1))).add
|
||||
(tensorNode
|
||||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) +
|
||||
(-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap
|
||||
fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1))))))))).tensor := by
|
||||
rw [contr_tensor_eq <| pauliMatrix_lower_basis_expand_prod' _]
|
||||
/- Moving contraction through addition. -/
|
||||
rw [contr_add]
|
||||
rw [add_tensor_eq_snd <| contr_add _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
contr_add _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| contr_add _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||
/- Moving contraction through smul. -/
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
||||
contr_smul _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_fst <| contr_smul _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||
/- Replacing the contractions. -/
|
||||
rw [add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_0_0_0]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <|
|
||||
pauliMatrix_contr_lower_0_1_1]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
|
||||
eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_0_1]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
||||
smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_1_0]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <|
|
||||
pauliMatrix_contr_lower_2_0_1]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor
|
||||
<| pauliMatrix_contr_lower_2_1_0]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
|
||||
eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_3_0_0]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| eq_tensorNode_of_eq_tensor <|
|
||||
pauliMatrix_contr_lower_3_1_1]
|
||||
|
||||
lemma pauliMatrix_contract_pauliMatrix_expand :
|
||||
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor =
|
||||
2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)
|
||||
+ 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
||||
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
|
||||
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) := by
|
||||
rw [pauliMatrix_contract_pauliMatrix_aux]
|
||||
simp only [Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, neg_smul,
|
||||
one_smul, add_tensor, tensorNode_tensor, smul_tensor, smul_add, smul_neg, _root_.smul_smul,
|
||||
neg_mul, _root_.neg_neg]
|
||||
ring_nf
|
||||
rw [Complex.I_sq]
|
||||
simp only [neg_smul, one_smul, _root_.neg_neg]
|
||||
abel
|
||||
|
||||
/-- The statement that `η_{μν} σ^{μ α dot β} σ^{ν α' dot β'} = 2 ε^{αα'} ε^{dot β dot β'}`. -/
|
||||
theorem pauliMatrix_contract_pauliMatrix :
|
||||
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | ν α' β' =
|
||||
2 •ₜ Fermion.leftMetric | α α' ⊗ Fermion.rightMetric | β β'}ᵀ := by
|
||||
rw [pauliMatrix_contract_pauliMatrix_expand]
|
||||
rw [perm_tensor_eq <| smul_tensor_eq <| leftMetric_mul_rightMetric_tree]
|
||||
rw [perm_smul]
|
||||
/- Moving perm through adds. -/
|
||||
rw [smul_tensor_eq <| perm_add _ _ _]
|
||||
rw [smul_tensor_eq <| add_tensor_eq_snd <| perm_add _ _ _]
|
||||
rw [smul_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| perm_add _ _ _]
|
||||
/- Moving perm through smul. -/
|
||||
rw [smul_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_fst <| perm_smul _ _ _]
|
||||
rw [smul_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||
<| add_tensor_eq_fst <| perm_smul _ _ _]
|
||||
/- Perm acting on basis. -/
|
||||
erw [smul_tensor_eq <| add_tensor_eq_fst <| perm_basisVector_tree _ _]
|
||||
erw [smul_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
|
||||
perm_basisVector_tree _ _]
|
||||
erw [smul_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
||||
smul_tensor_eq <| perm_basisVector_tree _ _]
|
||||
erw [smul_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
perm_basisVector_tree _ _]
|
||||
/- Simplifying. -/
|
||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||
have h1 (b0011 b1100 b0110 b1001 : CoeSort.coe (complexLorentzTensor.F.obj
|
||||
(OverColor.mk pauliMatrixContrPauliMatrixMap))) :
|
||||
((2 • b0011 + 2 • b1100) - 2 • b0110 - 2 • b1001) = (2 : ℂ) • ((b0011) +
|
||||
(((-1 : ℂ)• b0110) + (((-1 : ℂ) •b1001) + b1100))) := by
|
||||
trans (2 : ℂ) • b0011 + (2 : ℂ) • b1100 - ((2 : ℂ) • b0110) - ((2 : ℂ) • b1001)
|
||||
· repeat rw [two_smul]
|
||||
· simp only [neg_smul, one_smul, smul_add, smul_neg]
|
||||
abel
|
||||
rw [h1]
|
||||
congr
|
||||
· funext i
|
||||
fin_cases i <;> rfl
|
||||
· funext i
|
||||
fin_cases i <;> rfl
|
||||
· funext i
|
||||
fin_cases i <;> rfl
|
||||
· funext i
|
||||
fin_cases i <;> rfl
|
||||
|
||||
end Fermion
|
Loading…
Add table
Add a link
Reference in a new issue