refactor: Lint
This commit is contained in:
parent
1e8efdb16a
commit
c9c7b25ea8
9 changed files with 946 additions and 696 deletions
|
@ -109,7 +109,10 @@ import HepLean.StandardModel.HiggsBoson.Potential
|
||||||
import HepLean.StandardModel.Representations
|
import HepLean.StandardModel.Representations
|
||||||
import HepLean.Tensors.ComplexLorentz.Basic
|
import HepLean.Tensors.ComplexLorentz.Basic
|
||||||
import HepLean.Tensors.ComplexLorentz.Basis
|
import HepLean.Tensors.ComplexLorentz.Basis
|
||||||
|
import HepLean.Tensors.ComplexLorentz.BasisTrees
|
||||||
import HepLean.Tensors.ComplexLorentz.Lemmas
|
import HepLean.Tensors.ComplexLorentz.Lemmas
|
||||||
|
import HepLean.Tensors.ComplexLorentz.PauliContr
|
||||||
|
import HepLean.Tensors.ComplexLorentz.PauliLower
|
||||||
import HepLean.Tensors.OverColor.Basic
|
import HepLean.Tensors.OverColor.Basic
|
||||||
import HepLean.Tensors.OverColor.Discrete
|
import HepLean.Tensors.OverColor.Discrete
|
||||||
import HepLean.Tensors.OverColor.Functors
|
import HepLean.Tensors.OverColor.Functors
|
||||||
|
|
|
@ -79,6 +79,15 @@ lemma perm_basisVector {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, LinearEquiv.ofLinear_apply]
|
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, LinearEquiv.ofLinear_apply]
|
||||||
rw [basis_eq_FDiscrete]
|
rw [basis_eq_FDiscrete]
|
||||||
|
|
||||||
|
lemma perm_basisVector_tree {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
|
{c1 : Fin m → complexLorentzTensor.C} (σ : OverColor.mk c ⟶ OverColor.mk c1)
|
||||||
|
(b : Π j, Fin (complexLorentzTensor.repDim (c j))) :
|
||||||
|
(perm σ (tensorNode (basisVector c b))).tensor =
|
||||||
|
(tensorNode (basisVector c1 (fun i => Fin.cast (perm_basisVector_cast σ i)
|
||||||
|
(b ((OverColor.Hom.toEquiv σ).symm i))))).tensor := by
|
||||||
|
exact perm_basisVector _ _
|
||||||
|
|
||||||
|
/-- The scalar determining if contracting two basis vectors together gives zero or not. -/
|
||||||
def contrBasisVectorMul {n : ℕ} {c : Fin n.succ.succ → complexLorentzTensor.C}
|
def contrBasisVectorMul {n : ℕ} {c : Fin n.succ.succ → complexLorentzTensor.C}
|
||||||
(i : Fin n.succ.succ) (j : Fin n.succ)
|
(i : Fin n.succ.succ) (j : Fin n.succ)
|
||||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) : ℂ :=
|
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) : ℂ :=
|
||||||
|
@ -89,7 +98,7 @@ lemma contrBasisVectorMul_neg {n : ℕ} {c : Fin n.succ.succ → complexLorentzT
|
||||||
(h : ¬ (b i).val = (b (i.succAbove j)).val := by decide) :
|
(h : ¬ (b i).val = (b (i.succAbove j)).val := by decide) :
|
||||||
contrBasisVectorMul i j b = 0 := by
|
contrBasisVectorMul i j b = 0 := by
|
||||||
rw [contrBasisVectorMul]
|
rw [contrBasisVectorMul]
|
||||||
simp
|
simp only [ite_eq_else, one_ne_zero, imp_false]
|
||||||
exact h
|
exact h
|
||||||
|
|
||||||
lemma contrBasisVectorMul_pos {n : ℕ} {c : Fin n.succ.succ → complexLorentzTensor.C}
|
lemma contrBasisVectorMul_pos {n : ℕ} {c : Fin n.succ.succ → complexLorentzTensor.C}
|
||||||
|
@ -97,7 +106,7 @@ lemma contrBasisVectorMul_pos {n : ℕ} {c : Fin n.succ.succ → complexLorentzT
|
||||||
(h : (b i).val = (b (i.succAbove j)).val := by decide) :
|
(h : (b i).val = (b (i.succAbove j)).val := by decide) :
|
||||||
contrBasisVectorMul i j b = 1 := by
|
contrBasisVectorMul i j b = 1 := by
|
||||||
rw [contrBasisVectorMul]
|
rw [contrBasisVectorMul]
|
||||||
simp
|
simp only [ite_eq_then, zero_ne_one, imp_false, Decidable.not_not]
|
||||||
exact h
|
exact h
|
||||||
|
|
||||||
lemma contr_basisVector {n : ℕ} {c : Fin n.succ.succ → complexLorentzTensor.C}
|
lemma contr_basisVector {n : ℕ} {c : Fin n.succ.succ → complexLorentzTensor.C}
|
||||||
|
@ -119,37 +128,41 @@ lemma contr_basisVector {n : ℕ} {c : Fin n.succ.succ → complexLorentzTensor.
|
||||||
erw [basis_contr]
|
erw [basis_contr]
|
||||||
rfl
|
rfl
|
||||||
|
|
||||||
lemma contr_basisVector_tree {n : ℕ} {c : Fin n.succ.succ → complexLorentzTensor.C}
|
lemma contr_basisVector_tree {n : ℕ} {c : Fin n.succ.succ → complexLorentzTensor.C}
|
||||||
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = complexLorentzTensor.τ (c i)}
|
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = complexLorentzTensor.τ (c i)}
|
||||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
||||||
(contr i j h (tensorNode (basisVector c b))).tensor =
|
(contr i j h (tensorNode (basisVector c b))).tensor =
|
||||||
(smul (contrBasisVectorMul i j b) (tensorNode ( basisVector (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
|
(smul (contrBasisVectorMul i j b) (tensorNode
|
||||||
(fun k => b (i.succAbove (j.succAbove k)))) )).tensor := by
|
(basisVector (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
|
||||||
|
(fun k => b (i.succAbove (j.succAbove k)))))).tensor := by
|
||||||
exact contr_basisVector _
|
exact contr_basisVector _
|
||||||
|
|
||||||
lemma contr_basisVector_tree_pos {n : ℕ} {c : Fin n.succ.succ → complexLorentzTensor.C}
|
lemma contr_basisVector_tree_pos {n : ℕ} {c : Fin n.succ.succ → complexLorentzTensor.C}
|
||||||
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = complexLorentzTensor.τ (c i)}
|
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = complexLorentzTensor.τ (c i)}
|
||||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) (hn : (b i).val = (b (i.succAbove j)).val := by decide) :
|
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
|
||||||
|
(hn : (b i).val = (b (i.succAbove j)).val := by decide) :
|
||||||
(contr i j h (tensorNode (basisVector c b))).tensor =
|
(contr i j h (tensorNode (basisVector c b))).tensor =
|
||||||
((tensorNode ( basisVector (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
|
((tensorNode (basisVector (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
|
||||||
(fun k => b (i.succAbove (j.succAbove k)))))).tensor := by
|
(fun k => b (i.succAbove (j.succAbove k)))))).tensor := by
|
||||||
rw [contr_basisVector_tree, contrBasisVectorMul]
|
rw [contr_basisVector_tree, contrBasisVectorMul]
|
||||||
rw [if_pos hn]
|
rw [if_pos hn]
|
||||||
simp [smul_tensor]
|
simp [smul_tensor]
|
||||||
|
|
||||||
lemma contr_basisVector_tree_neg {n : ℕ} {c : Fin n.succ.succ → complexLorentzTensor.C}
|
lemma contr_basisVector_tree_neg {n : ℕ} {c : Fin n.succ.succ → complexLorentzTensor.C}
|
||||||
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = complexLorentzTensor.τ (c i)}
|
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = complexLorentzTensor.τ (c i)}
|
||||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) (hn : ¬ (b i).val = (b (i.succAbove j)).val := by decide) :
|
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
|
||||||
|
(hn : ¬ (b i).val = (b (i.succAbove j)).val := by decide) :
|
||||||
(contr i j h (tensorNode (basisVector c b))).tensor =
|
(contr i j h (tensorNode (basisVector c b))).tensor =
|
||||||
(tensorNode 0).tensor := by
|
(tensorNode 0).tensor := by
|
||||||
rw [contr_basisVector_tree, contrBasisVectorMul]
|
rw [contr_basisVector_tree, contrBasisVectorMul]
|
||||||
rw [if_neg hn]
|
rw [if_neg hn]
|
||||||
simp [smul_tensor]
|
simp only [Nat.succ_eq_add_one, smul_tensor, tensorNode_tensor, zero_smul]
|
||||||
|
|
||||||
|
|
||||||
|
/-- Equivalence of Fin types appearing in the product of two basis vectors. -/
|
||||||
def prodBasisVecEquiv {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
def prodBasisVecEquiv {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
{c1 : Fin m → complexLorentzTensor.C} (i : Fin n ⊕ Fin m) :
|
{c1 : Fin m → complexLorentzTensor.C} (i : Fin n ⊕ Fin m) :
|
||||||
Sum.elim (fun i => Fin (complexLorentzTensor.repDim (c i))) (fun i => Fin (complexLorentzTensor.repDim (c1 i)))
|
Sum.elim (fun i => Fin (complexLorentzTensor.repDim (c i))) (fun i =>
|
||||||
|
Fin (complexLorentzTensor.repDim (c1 i)))
|
||||||
i ≃ Fin (complexLorentzTensor.repDim ((Sum.elim c c1 i))) :=
|
i ≃ Fin (complexLorentzTensor.repDim ((Sum.elim c c1 i))) :=
|
||||||
match i with
|
match i with
|
||||||
| Sum.inl _ => Equiv.refl _
|
| Sum.inl _ => Equiv.refl _
|
||||||
|
@ -184,17 +197,17 @@ lemma prod_basisVector {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
| Sum.inl k => rfl
|
| Sum.inl k => rfl
|
||||||
| Sum.inr k => rfl
|
| Sum.inr k => rfl
|
||||||
|
|
||||||
lemma prod_basisVector_tree {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
lemma prod_basisVector_tree {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
{c1 : Fin m → complexLorentzTensor.C}
|
{c1 : Fin m → complexLorentzTensor.C}
|
||||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
|
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
|
||||||
(b1 : Π k, Fin (complexLorentzTensor.repDim (c1 k))) :
|
(b1 : Π k, Fin (complexLorentzTensor.repDim (c1 k))) :
|
||||||
(prod (tensorNode (basisVector c b)) (tensorNode (basisVector c1 b1))).tensor =
|
(prod (tensorNode (basisVector c b)) (tensorNode (basisVector c1 b1))).tensor =
|
||||||
(tensorNode (basisVector (Sum.elim c c1 ∘ finSumFinEquiv.symm) (fun i =>
|
(tensorNode (basisVector (Sum.elim c c1 ∘ finSumFinEquiv.symm) (fun i =>
|
||||||
prodBasisVecEquiv (finSumFinEquiv.symm i)
|
prodBasisVecEquiv (finSumFinEquiv.symm i)
|
||||||
((HepLean.PiTensorProduct.elimPureTensor b b1) (finSumFinEquiv.symm i))))).tensor := by
|
((HepLean.PiTensorProduct.elimPureTensor b b1) (finSumFinEquiv.symm i))))).tensor := by
|
||||||
exact prod_basisVector _ _
|
exact prod_basisVector _ _
|
||||||
|
|
||||||
lemma eval_basisVector {n : ℕ} {c : Fin n.succ → complexLorentzTensor.C}
|
lemma eval_basisVector {n : ℕ} {c : Fin n.succ → complexLorentzTensor.C}
|
||||||
{i : Fin n.succ} (j : Fin (complexLorentzTensor.repDim (c i)))
|
{i : Fin n.succ} (j : Fin (complexLorentzTensor.repDim (c i)))
|
||||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
||||||
(eval i j (tensorNode (basisVector c b))).tensor = (if j = b i then (1 : ℂ) else 0) •
|
(eval i j (tensorNode (basisVector c b))).tensor = (if j = b i then (1 : ℂ) else 0) •
|
||||||
|
@ -282,7 +295,7 @@ lemma contrMatrix_basis_expand_tree : {Lorentz.contrMetric | μ ν}ᵀ.tensor =
|
||||||
contrMatrix_basis_expand
|
contrMatrix_basis_expand
|
||||||
|
|
||||||
lemma leftMetric_expand : {Fermion.leftMetric | α β}ᵀ.tensor =
|
lemma leftMetric_expand : {Fermion.leftMetric | α β}ᵀ.tensor =
|
||||||
- basisVector ![Color.upL, Color.upL] (fun | 0 => 0 | 1 => 1)
|
- basisVector ![Color.upL, Color.upL] (fun | 0 => 0 | 1 => 1)
|
||||||
+ basisVector ![Color.upL, Color.upL] (fun | 0 => 1 | 1 => 0) := by
|
+ basisVector ![Color.upL, Color.upL] (fun | 0 => 1 | 1 => 0) := by
|
||||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
|
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
|
||||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue]
|
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue]
|
||||||
|
@ -299,7 +312,8 @@ lemma leftMetric_expand : {Fermion.leftMetric | α β}ᵀ.tensor =
|
||||||
· rfl
|
· rfl
|
||||||
|
|
||||||
lemma leftMetric_expand_tree : {Fermion.leftMetric | α β}ᵀ.tensor =
|
lemma leftMetric_expand_tree : {Fermion.leftMetric | α β}ᵀ.tensor =
|
||||||
(TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.upL, Color.upL] (fun | 0 => 0 | 1 => 1)))) <|
|
(TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.upL, Color.upL]
|
||||||
|
(fun | 0 => 0 | 1 => 1)))) <|
|
||||||
(tensorNode (basisVector ![Color.upL, Color.upL] (fun | 0 => 1 | 1 => 0)))).tensor :=
|
(tensorNode (basisVector ![Color.upL, Color.upL] (fun | 0 => 1 | 1 => 0)))).tensor :=
|
||||||
leftMetric_expand
|
leftMetric_expand
|
||||||
|
|
||||||
|
@ -320,8 +334,10 @@ lemma altLeftMetric_expand : {Fermion.altLeftMetric | α β}ᵀ.tensor =
|
||||||
· rfl
|
· rfl
|
||||||
|
|
||||||
lemma altLeftMetric_expand_tree : {Fermion.altLeftMetric | α β}ᵀ.tensor =
|
lemma altLeftMetric_expand_tree : {Fermion.altLeftMetric | α β}ᵀ.tensor =
|
||||||
(TensorTree.add (tensorNode (basisVector ![Color.downL, Color.downL] (fun | 0 => 0 | 1 => 1))) <|
|
(TensorTree.add (tensorNode (basisVector ![Color.downL, Color.downL]
|
||||||
(smul (-1) (tensorNode (basisVector ![Color.downL, Color.downL] (fun | 0 => 1 | 1 => 0))))).tensor :=
|
(fun | 0 => 0 | 1 => 1))) <|
|
||||||
|
(smul (-1) (tensorNode (basisVector ![Color.downL, Color.downL]
|
||||||
|
(fun | 0 => 1 | 1 => 0))))).tensor :=
|
||||||
altLeftMetric_expand
|
altLeftMetric_expand
|
||||||
|
|
||||||
lemma rightMetric_expand : {Fermion.rightMetric | α β}ᵀ.tensor =
|
lemma rightMetric_expand : {Fermion.rightMetric | α β}ᵀ.tensor =
|
||||||
|
@ -342,7 +358,8 @@ lemma rightMetric_expand : {Fermion.rightMetric | α β}ᵀ.tensor =
|
||||||
· rfl
|
· rfl
|
||||||
|
|
||||||
lemma rightMetric_expand_tree : {Fermion.rightMetric | α β}ᵀ.tensor =
|
lemma rightMetric_expand_tree : {Fermion.rightMetric | α β}ᵀ.tensor =
|
||||||
(TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.upR, Color.upR] (fun | 0 => 0 | 1 => 1)))) <|
|
(TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.upR, Color.upR]
|
||||||
|
(fun | 0 => 0 | 1 => 1)))) <|
|
||||||
(tensorNode (basisVector ![Color.upR, Color.upR] (fun | 0 => 1 | 1 => 0)))).tensor :=
|
(tensorNode (basisVector ![Color.upR, Color.upR] (fun | 0 => 1 | 1 => 0)))).tensor :=
|
||||||
rightMetric_expand
|
rightMetric_expand
|
||||||
|
|
||||||
|
@ -363,8 +380,10 @@ lemma altRightMetric_expand : {Fermion.altRightMetric | α β}ᵀ.tensor =
|
||||||
· rfl
|
· rfl
|
||||||
|
|
||||||
lemma altRightMetric_expand_tree : {Fermion.altRightMetric | α β}ᵀ.tensor =
|
lemma altRightMetric_expand_tree : {Fermion.altRightMetric | α β}ᵀ.tensor =
|
||||||
(TensorTree.add (tensorNode (basisVector ![Color.downR, Color.downR] (fun | 0 => 0 | 1 => 1))) <|
|
(TensorTree.add (tensorNode (basisVector
|
||||||
(smul (-1) (tensorNode (basisVector ![Color.downR, Color.downR] (fun | 0 => 1 | 1 => 0))))).tensor :=
|
![Color.downR, Color.downR] (fun | 0 => 0 | 1 => 1))) <|
|
||||||
|
(smul (-1) (tensorNode (basisVector ![Color.downR, Color.downR]
|
||||||
|
(fun | 0 => 1 | 1 => 0))))).tensor :=
|
||||||
altRightMetric_expand
|
altRightMetric_expand
|
||||||
|
|
||||||
/-- The expansion of the Pauli matrices `σ^μ^a^{dot a}` in terms of basis vectors. -/
|
/-- The expansion of the Pauli matrices `σ^μ^a^{dot a}` in terms of basis vectors. -/
|
||||||
|
@ -406,13 +425,13 @@ lemma pauliMatrix_basis_expand : {PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
||||||
| (2 : Fin 3) => rfl
|
| (2 : Fin 3) => rfl
|
||||||
|
|
||||||
lemma pauliMatrix_basis_expand_tree : {PauliMatrix.asConsTensor | μ α β}ᵀ.tensor =
|
lemma pauliMatrix_basis_expand_tree : {PauliMatrix.asConsTensor | μ α β}ᵀ.tensor =
|
||||||
(TensorTree.add (tensorNode
|
(TensorTree.add (tensorNode
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 0 | 2 => 0))) <|
|
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 0 | 2 => 0))) <|
|
||||||
TensorTree.add (tensorNode
|
TensorTree.add (tensorNode
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 1 | 2 => 1))) <|
|
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 1 | 2 => 1))) <|
|
||||||
TensorTree.add (tensorNode
|
TensorTree.add (tensorNode
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 0 | 2 => 1))) <|
|
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 0 | 2 => 1))) <|
|
||||||
TensorTree.add (tensorNode
|
TensorTree.add (tensorNode
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 1 | 2 => 0))) <|
|
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 1 | 2 => 0))) <|
|
||||||
TensorTree.add (smul (-I) (tensorNode
|
TensorTree.add (smul (-I) (tensorNode
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <|
|
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <|
|
||||||
|
@ -421,7 +440,8 @@ lemma pauliMatrix_basis_expand_tree : {PauliMatrix.asConsTensor | μ α β}ᵀ.t
|
||||||
TensorTree.add (tensorNode
|
TensorTree.add (tensorNode
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 0 | 2 => 0))) <|
|
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 0 | 2 => 0))) <|
|
||||||
(smul (-1) (tensorNode
|
(smul (-1) (tensorNode
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by
|
(basisVector ![Color.up, Color.upL, Color.upR]
|
||||||
|
(fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by
|
||||||
rw [pauliMatrix_basis_expand]
|
rw [pauliMatrix_basis_expand]
|
||||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor,
|
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor,
|
||||||
smul_tensor, neg_smul, one_smul]
|
smul_tensor, neg_smul, one_smul]
|
||||||
|
|
233
HepLean/Tensors/ComplexLorentz/BasisTrees.lean
Normal file
233
HepLean/Tensors/ComplexLorentz/BasisTrees.lean
Normal file
|
@ -0,0 +1,233 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Joseph Tooby-Smith
|
||||||
|
-/
|
||||||
|
import HepLean.Tensors.Tree.Elab
|
||||||
|
import HepLean.Tensors.ComplexLorentz.Basic
|
||||||
|
import Mathlib.LinearAlgebra.TensorProduct.Basis
|
||||||
|
import HepLean.Tensors.Tree.NodeIdentities.Basic
|
||||||
|
import HepLean.Tensors.Tree.NodeIdentities.PermProd
|
||||||
|
import HepLean.Tensors.Tree.NodeIdentities.PermContr
|
||||||
|
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
|
||||||
|
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
|
||||||
|
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
|
||||||
|
import HepLean.Tensors.ComplexLorentz.Basis
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## Basis trees
|
||||||
|
|
||||||
|
When contracting e.g. Pauli matrices with other tensors, it is sometimes convienent
|
||||||
|
to rewrite the contraction in terms of a basis.
|
||||||
|
|
||||||
|
The lemmas in this file allow us to do this.
|
||||||
|
-/
|
||||||
|
open IndexNotation
|
||||||
|
open CategoryTheory
|
||||||
|
open MonoidalCategory
|
||||||
|
open Matrix
|
||||||
|
open MatrixGroups
|
||||||
|
open Complex
|
||||||
|
open TensorProduct
|
||||||
|
open IndexNotation
|
||||||
|
open CategoryTheory
|
||||||
|
open TensorTree
|
||||||
|
open OverColor.Discrete
|
||||||
|
|
||||||
|
noncomputable section
|
||||||
|
|
||||||
|
namespace Fermion
|
||||||
|
open complexLorentzTensor
|
||||||
|
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## Tree expansions for Pauli matrices.
|
||||||
|
|
||||||
|
-/
|
||||||
|
|
||||||
|
/-- The map to colors one gets when contracting with Pauli matrices on the right. -/
|
||||||
|
abbrev pauliMatrixContrMap {n : ℕ} (c : Fin n → complexLorentzTensor.C) :=
|
||||||
|
(Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm)
|
||||||
|
|
||||||
|
lemma prod_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
|
(t : TensorTree complexLorentzTensor c) :
|
||||||
|
(TensorTree.prod t (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||||
|
PauliMatrix.asConsTensor)).tensor = (((t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
|
||||||
|
(((t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
|
||||||
|
(((t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
|
||||||
|
(((t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
|
||||||
|
((TensorTree.smul (-I) ((t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
|
||||||
|
((TensorTree.smul I ((t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
|
||||||
|
((t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0))).add
|
||||||
|
(TensorTree.smul (-1) (t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR]
|
||||||
|
fun | 0 => 3 | 1 => 1 | 2 => 1))))))))))).tensor := by
|
||||||
|
rw [prod_tensor_eq_snd <| pauliMatrix_basis_expand_tree]
|
||||||
|
rw [prod_add _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| prod_add _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
prod_add _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||||||
|
/- Moving smuls. -/
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd<| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| prod_smul _ _ _]
|
||||||
|
rfl
|
||||||
|
|
||||||
|
lemma contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
|
(t : TensorTree complexLorentzTensor c) (i : Fin (n + 3)) (j : Fin (n +2))
|
||||||
|
(h : (pauliMatrixContrMap c) (i.succAbove j) =
|
||||||
|
complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) :
|
||||||
|
(contr i j h (TensorTree.prod t
|
||||||
|
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||||
|
PauliMatrix.asConsTensor))).tensor =
|
||||||
|
((contr i j h (t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
|
||||||
|
((contr i j h (t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
|
||||||
|
((contr i j h (t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
|
||||||
|
((contr i j h (t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
|
||||||
|
((TensorTree.smul (-I) (contr i j h (t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
|
||||||
|
((TensorTree.smul I (contr i j h (t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
|
||||||
|
((contr i j h (t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0)))).add
|
||||||
|
(TensorTree.smul (-1) (contr i j h (t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR]
|
||||||
|
fun | 0 => 3 | 1 => 1 | 2 => 1)))))))))))).tensor := by
|
||||||
|
rw [contr_tensor_eq <| prod_pauliMatrix_basis_tree_expand _]
|
||||||
|
/- Moving contr over add. -/
|
||||||
|
rw [contr_add]
|
||||||
|
rw [add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
/- Moving contr over smul. -/
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
contr_smul _ _]
|
||||||
|
|
||||||
|
lemma basis_contr_pauliMatrix_basis_tree_expand' {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
|
(i : Fin (n + 3)) (j : Fin (n +2))
|
||||||
|
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
|
||||||
|
((pauliMatrixContrMap c) i))
|
||||||
|
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
||||||
|
let c' := Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm
|
||||||
|
let b' (i1 i2 i3 : Fin 4) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
|
||||||
|
((HepLean.PiTensorProduct.elimPureTensor b (fun | 0 => i1 | 1 => i2 | 2 => i3))
|
||||||
|
(finSumFinEquiv.symm i))
|
||||||
|
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
|
||||||
|
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||||
|
PauliMatrix.asConsTensor))).tensor = ((contr i j h ((tensorNode
|
||||||
|
(basisVector c' (b' 0 0 0))))).add
|
||||||
|
((contr i j h ((tensorNode (basisVector c' (b' 0 1 1))))).add
|
||||||
|
((contr i j h ((tensorNode (basisVector c' (b' 1 0 1))))).add
|
||||||
|
((contr i j h ((tensorNode (basisVector c' (b' 1 1 0))))).add
|
||||||
|
((TensorTree.smul (-I) (contr i j h ((tensorNode (basisVector c' (b' 2 0 1)))))).add
|
||||||
|
((TensorTree.smul I (contr i j h ((tensorNode (basisVector c' (b' 2 1 0)))))).add
|
||||||
|
((contr i j h ((tensorNode (basisVector c' (b' 3 0 0))))).add
|
||||||
|
(TensorTree.smul (-1) (contr i j h ((tensorNode
|
||||||
|
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
|
||||||
|
rw [contr_pauliMatrix_basis_tree_expand]
|
||||||
|
/- Product of basis vectors . -/
|
||||||
|
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
|
||||||
|
<| prod_basisVector_tree _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
|
||||||
|
<| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
|
||||||
|
<| prod_basisVector_tree _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
|
||||||
|
<| prod_basisVector_tree _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
|
||||||
|
<| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||||||
|
rfl
|
||||||
|
|
||||||
|
lemma basis_contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
|
(i : Fin (n + 3)) (j : Fin (n +2))
|
||||||
|
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
|
||||||
|
((pauliMatrixContrMap c) i))
|
||||||
|
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
||||||
|
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
|
||||||
|
∘ Fin.succAbove i ∘ Fin.succAbove j
|
||||||
|
let b'' (i1 i2 i3 : Fin 4) : (i : Fin (n + (Nat.succ 0).succ.succ)) →
|
||||||
|
Fin (complexLorentzTensor.repDim (Sum.elim c ![Color.up, Color.upL, Color.upR]
|
||||||
|
(finSumFinEquiv.symm i))) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
|
||||||
|
((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3))
|
||||||
|
(finSumFinEquiv.symm i))
|
||||||
|
let b' (i1 i2 i3 : Fin 4) := fun k => (b'' i1 i2 i3) (i.succAbove (j.succAbove k))
|
||||||
|
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
|
||||||
|
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||||
|
PauliMatrix.asConsTensor))).tensor = (((
|
||||||
|
TensorTree.smul (contrBasisVectorMul i j (b'' 0 0 0))
|
||||||
|
(tensorNode (basisVector c' (b' 0 0 0))))).add
|
||||||
|
(((TensorTree.smul (contrBasisVectorMul i j (b'' 0 1 1))
|
||||||
|
(tensorNode (basisVector c' (b' 0 1 1))))).add
|
||||||
|
(((TensorTree.smul (contrBasisVectorMul i j (b'' 1 0 1))
|
||||||
|
(tensorNode (basisVector c' (b' 1 0 1))))).add
|
||||||
|
(((TensorTree.smul (contrBasisVectorMul i j (b'' 1 1 0))
|
||||||
|
(tensorNode (basisVector c' (b' 1 1 0))))).add
|
||||||
|
((TensorTree.smul (-I) ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 0 1))
|
||||||
|
(tensorNode (basisVector c' (b' 2 0 1)))))).add
|
||||||
|
((TensorTree.smul I ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 1 0))
|
||||||
|
(tensorNode (basisVector c' (b' 2 1 0)))))).add
|
||||||
|
(((TensorTree.smul (contrBasisVectorMul i j (b'' 3 0 0))
|
||||||
|
(tensorNode (basisVector c' (b' 3 0 0))))).add
|
||||||
|
(TensorTree.smul (-1) ((TensorTree.smul (contrBasisVectorMul i j (b'' 3 1 1)) (tensorNode
|
||||||
|
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
|
||||||
|
rw [basis_contr_pauliMatrix_basis_tree_expand']
|
||||||
|
/- Contracting basis vectors. -/
|
||||||
|
rw [add_tensor_eq_fst <| contr_basisVector_tree _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
|
||||||
|
<| contr_basisVector_tree _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_fst <| contr_basisVector_tree _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
|
||||||
|
<| contr_basisVector_tree _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
smul_tensor_eq <| contr_basisVector_tree _]
|
||||||
|
|
||||||
|
end Fermion
|
||||||
|
|
||||||
|
end
|
|
@ -3,17 +3,7 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||||
Released under Apache 2.0 license as described in the file LICENSE.
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
Authors: Joseph Tooby-Smith
|
Authors: Joseph Tooby-Smith
|
||||||
-/
|
-/
|
||||||
import HepLean.Tensors.Tree.Elab
|
import HepLean.Tensors.ComplexLorentz.BasisTrees
|
||||||
import HepLean.Tensors.ComplexLorentz.Basic
|
|
||||||
import Mathlib.LinearAlgebra.TensorProduct.Basis
|
|
||||||
import HepLean.Tensors.Tree.NodeIdentities.Basic
|
|
||||||
import HepLean.Tensors.Tree.NodeIdentities.PermProd
|
|
||||||
import HepLean.Tensors.Tree.NodeIdentities.PermContr
|
|
||||||
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
|
|
||||||
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
|
|
||||||
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
|
|
||||||
import HepLean.Tensors.ComplexLorentz.Basis
|
|
||||||
import LLMLean
|
|
||||||
/-!
|
/-!
|
||||||
|
|
||||||
## Lemmas related to complex Lorentz tensors.
|
## Lemmas related to complex Lorentz tensors.
|
||||||
|
@ -33,7 +23,7 @@ open OverColor.Discrete
|
||||||
noncomputable section
|
noncomputable section
|
||||||
|
|
||||||
namespace Fermion
|
namespace Fermion
|
||||||
|
open complexLorentzTensor
|
||||||
set_option maxRecDepth 20000 in
|
set_option maxRecDepth 20000 in
|
||||||
lemma contr_rank_2_symm {T1 : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
lemma contr_rank_2_symm {T1 : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
||||||
{T2 : (Lorentz.complexCo ⊗ Lorentz.complexCo).V} :
|
{T2 : (Lorentz.complexCo ⊗ Lorentz.complexCo).V} :
|
||||||
|
@ -117,8 +107,8 @@ lemma antiSymm_add_self {A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
||||||
And related results.
|
And related results.
|
||||||
|
|
||||||
-/
|
-/
|
||||||
open complexLorentzTensor
|
|
||||||
|
|
||||||
|
/-- The map to color one gets when multiplying left and right metrics. -/
|
||||||
def leftMetricMulRightMap := (Sum.elim ![Color.upL, Color.upL] ![Color.upR, Color.upR]) ∘
|
def leftMetricMulRightMap := (Sum.elim ![Color.upL, Color.upL] ![Color.upR, Color.upR]) ∘
|
||||||
finSumFinEquiv.symm
|
finSumFinEquiv.symm
|
||||||
|
|
||||||
|
@ -154,659 +144,20 @@ lemma leftMetric_mul_rightMetric : {Fermion.leftMetric | α α' ⊗ Fermion.righ
|
||||||
funext x
|
funext x
|
||||||
fin_cases x <;> rfl
|
fin_cases x <;> rfl
|
||||||
|
|
||||||
def pauliMatrixLowerMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘
|
lemma leftMetric_mul_rightMetric_tree :
|
||||||
⇑finSumFinEquiv.symm) ∘ Fin.succAbove 0 ∘ Fin.succAbove 1)
|
{Fermion.leftMetric | α α' ⊗ Fermion.rightMetric | β β'}ᵀ.tensor
|
||||||
|
|
||||||
abbrev pauliMatrixContrMap {n : ℕ} (c : Fin n → complexLorentzTensor.C) :=
|
|
||||||
(Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm)
|
|
||||||
|
|
||||||
lemma prod_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
|
||||||
(t : TensorTree complexLorentzTensor c) :
|
|
||||||
(TensorTree.prod t (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
|
||||||
PauliMatrix.asConsTensor)).tensor = (((t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
|
|
||||||
(((t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
|
|
||||||
(((t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
|
|
||||||
(((t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
|
|
||||||
((TensorTree.smul (-I) ((t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
|
|
||||||
((TensorTree.smul I ((t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
|
|
||||||
((t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0))).add
|
|
||||||
(TensorTree.smul (-1) (t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR]
|
|
||||||
fun | 0 => 3 | 1 => 1 | 2 => 1))))))))))).tensor := by
|
|
||||||
rw [prod_tensor_eq_snd <| pauliMatrix_basis_expand_tree]
|
|
||||||
rw [prod_add _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| prod_add _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
prod_add _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
|
||||||
/- Moving smuls. -/
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd<| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| prod_smul _ _ _]
|
|
||||||
rfl
|
|
||||||
|
|
||||||
lemma contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
|
||||||
(t : TensorTree complexLorentzTensor c) (i : Fin (n + 3)) (j : Fin (n +2))
|
|
||||||
(h : (pauliMatrixContrMap c) (i.succAbove j) =
|
|
||||||
complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) :
|
|
||||||
(contr i j h (TensorTree.prod t
|
|
||||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
|
||||||
PauliMatrix.asConsTensor))).tensor =
|
|
||||||
((contr i j h (t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
|
|
||||||
((contr i j h (t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
|
|
||||||
((contr i j h (t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
|
|
||||||
((contr i j h (t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
|
|
||||||
((TensorTree.smul (-I) (contr i j h (t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
|
|
||||||
((TensorTree.smul I (contr i j h (t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
|
|
||||||
((contr i j h (t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0)))).add
|
|
||||||
(TensorTree.smul (-1) (contr i j h (t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR]
|
|
||||||
fun | 0 => 3 | 1 => 1 | 2 => 1)))))))))))).tensor := by
|
|
||||||
rw [contr_tensor_eq <| prod_pauliMatrix_basis_tree_expand _]
|
|
||||||
/- Moving contr over add. -/
|
|
||||||
rw [contr_add]
|
|
||||||
rw [add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
/- Moving contr over smul. -/
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
contr_smul _ _]
|
|
||||||
|
|
||||||
lemma basis_contr_pauliMatrix_basis_tree_expand' {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
|
||||||
(i : Fin (n + 3)) (j : Fin (n +2))
|
|
||||||
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
|
|
||||||
((pauliMatrixContrMap c) i))
|
|
||||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
|
||||||
let c' := Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm
|
|
||||||
let b' (i1 i2 i3 : Fin 4) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
|
|
||||||
((HepLean.PiTensorProduct.elimPureTensor b (fun | 0 => i1 | 1 => i2 | 2 => i3))
|
|
||||||
(finSumFinEquiv.symm i))
|
|
||||||
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
|
|
||||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
|
||||||
PauliMatrix.asConsTensor))).tensor = ((contr i j h ((tensorNode
|
|
||||||
(basisVector c' (b' 0 0 0))))).add
|
|
||||||
((contr i j h ((tensorNode (basisVector c' (b' 0 1 1))))).add
|
|
||||||
((contr i j h ((tensorNode (basisVector c' (b' 1 0 1))))).add
|
|
||||||
((contr i j h ((tensorNode (basisVector c' (b' 1 1 0))))).add
|
|
||||||
((TensorTree.smul (-I) (contr i j h ((tensorNode (basisVector c' (b' 2 0 1)))))).add
|
|
||||||
((TensorTree.smul I (contr i j h ((tensorNode (basisVector c' (b' 2 1 0)))))).add
|
|
||||||
((contr i j h ((tensorNode (basisVector c' (b' 3 0 0))))).add
|
|
||||||
(TensorTree.smul (-1) (contr i j h ((tensorNode
|
|
||||||
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
|
|
||||||
rw [contr_pauliMatrix_basis_tree_expand]
|
|
||||||
/- Product of basis vectors . -/
|
|
||||||
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
|
|
||||||
<| prod_basisVector_tree _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
|
|
||||||
<| contr_tensor_eq <| prod_basisVector_tree _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
|
|
||||||
<| prod_basisVector_tree _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
|
|
||||||
<| prod_basisVector_tree _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
|
|
||||||
<| contr_tensor_eq <| prod_basisVector_tree _ _]
|
|
||||||
rfl
|
|
||||||
|
|
||||||
lemma basis_contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
|
||||||
(i : Fin (n + 3)) (j : Fin (n +2))
|
|
||||||
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
|
|
||||||
((pauliMatrixContrMap c) i))
|
|
||||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
|
||||||
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
|
|
||||||
∘ Fin.succAbove i ∘ Fin.succAbove j
|
|
||||||
let b'' (i1 i2 i3 : Fin 4) : (i : Fin (n + (Nat.succ 0).succ.succ)) →
|
|
||||||
Fin (complexLorentzTensor.repDim (Sum.elim c ![Color.up, Color.upL, Color.upR]
|
|
||||||
(finSumFinEquiv.symm i))) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
|
|
||||||
((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3))
|
|
||||||
(finSumFinEquiv.symm i))
|
|
||||||
let b' (i1 i2 i3 : Fin 4) := fun k => (b'' i1 i2 i3) (i.succAbove (j.succAbove k))
|
|
||||||
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
|
|
||||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
|
||||||
PauliMatrix.asConsTensor))).tensor = (((
|
|
||||||
TensorTree.smul (contrBasisVectorMul i j (b'' 0 0 0))
|
|
||||||
(tensorNode (basisVector c' (b' 0 0 0))))).add
|
|
||||||
(((TensorTree.smul (contrBasisVectorMul i j (b'' 0 1 1))
|
|
||||||
(tensorNode (basisVector c' (b' 0 1 1))))).add
|
|
||||||
(((TensorTree.smul (contrBasisVectorMul i j (b'' 1 0 1))
|
|
||||||
(tensorNode (basisVector c' (b' 1 0 1))))).add
|
|
||||||
(((TensorTree.smul (contrBasisVectorMul i j (b'' 1 1 0))
|
|
||||||
(tensorNode (basisVector c' (b' 1 1 0))))).add
|
|
||||||
((TensorTree.smul (-I) ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 0 1))
|
|
||||||
(tensorNode (basisVector c' (b' 2 0 1)))))).add
|
|
||||||
((TensorTree.smul I ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 1 0))
|
|
||||||
(tensorNode (basisVector c' (b' 2 1 0)))))).add
|
|
||||||
(((TensorTree.smul (contrBasisVectorMul i j (b'' 3 0 0))
|
|
||||||
(tensorNode (basisVector c' (b' 3 0 0))))).add
|
|
||||||
(TensorTree.smul (-1) ((TensorTree.smul (contrBasisVectorMul i j (b'' 3 1 1)) (tensorNode
|
|
||||||
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
|
|
||||||
rw [basis_contr_pauliMatrix_basis_tree_expand']
|
|
||||||
/- Contracting basis vectors. -/
|
|
||||||
rw [add_tensor_eq_fst <| contr_basisVector_tree _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
|
|
||||||
<| contr_basisVector_tree _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_fst <| contr_basisVector_tree _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
|
|
||||||
<| contr_basisVector_tree _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
smul_tensor_eq <| contr_basisVector_tree _]
|
|
||||||
|
|
||||||
lemma pauliMatrix_contr_down_0 :
|
|
||||||
(contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
|
|
||||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
|
||||||
PauliMatrix.asConsTensor)))).tensor
|
|
||||||
= basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
|
|
||||||
+ basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1) := by
|
|
||||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
|
||||||
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
|
||||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
|
||||||
simp only [one_smul, zero_smul, smul_zero, add_zero]
|
|
||||||
congr 1
|
|
||||||
· congr 1
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
· congr 1
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
|
|
||||||
lemma pauliMatrix_contr_down_0_tree :
|
|
||||||
(contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
|
|
||||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
|
||||||
PauliMatrix.asConsTensor)))).tensor
|
|
||||||
= (TensorTree.add (tensorNode
|
= (TensorTree.add (tensorNode
|
||||||
(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)))
|
(basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1))) <|
|
||||||
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)))).tensor := by
|
TensorTree.add (TensorTree.smul (-1 : ℂ) (tensorNode
|
||||||
exact pauliMatrix_contr_down_0
|
(basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)))) <|
|
||||||
|
TensorTree.add (TensorTree.smul (-1 : ℂ) (tensorNode
|
||||||
lemma pauliMatrix_contr_down_1 :
|
(basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)))) <|
|
||||||
{(basisVector ![Color.down, Color.down] fun x => 1) | μ ν ⊗
|
|
||||||
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
|
||||||
= basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
|
|
||||||
+ basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by
|
|
||||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
|
||||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
|
||||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
|
||||||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
|
||||||
congr 1
|
|
||||||
· congr 1
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
· congr 1
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
|
|
||||||
lemma pauliMatrix_contr_down_1_tree :
|
|
||||||
{(basisVector ![Color.down, Color.down] fun x => 1) | μ ν ⊗
|
|
||||||
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
|
||||||
= (TensorTree.add (tensorNode
|
|
||||||
(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))
|
|
||||||
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))).tensor := by
|
|
||||||
exact pauliMatrix_contr_down_1
|
|
||||||
|
|
||||||
lemma pauliMatrix_contr_down_2 :
|
|
||||||
{(basisVector ![Color.down, Color.down] fun x => 2) | μ ν ⊗
|
|
||||||
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
|
||||||
= (- I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
|
|
||||||
+ (I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0) := by
|
|
||||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
|
||||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
|
||||||
/- Simplifying. -/
|
|
||||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
|
||||||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
|
||||||
congr 1
|
|
||||||
· congr 2
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
· congr 2
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
|
|
||||||
lemma pauliMatrix_contr_down_2_tree :
|
|
||||||
{(basisVector ![Color.down, Color.down] fun x => 2) | μ ν ⊗
|
|
||||||
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor =
|
|
||||||
(TensorTree.add
|
|
||||||
(smul (- I) (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1))))
|
|
||||||
(smul I (tensorNode (basisVector
|
|
||||||
pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0))))).tensor := by
|
|
||||||
exact pauliMatrix_contr_down_2
|
|
||||||
|
|
||||||
lemma pauliMatrix_contr_down_3 :
|
|
||||||
{(basisVector ![Color.down, Color.down] fun x => 3) | μ ν ⊗
|
|
||||||
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
|
||||||
= basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
|
|
||||||
+ (- 1 : ℂ) • basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
|
|
||||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
|
||||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
|
|
||||||
/- Simplifying. -/
|
|
||||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
|
||||||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
|
||||||
congr 1
|
|
||||||
· congr 2
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
· congr 2
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
|
|
||||||
lemma pauliMatrix_contr_down_3_tree : {(basisVector ![Color.down, Color.down] fun x => 3) | μ ν ⊗
|
|
||||||
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor =
|
|
||||||
(TensorTree.add
|
|
||||||
((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0))))
|
|
||||||
(smul (-1) (tensorNode (basisVector pauliMatrixLowerMap
|
|
||||||
(fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by
|
|
||||||
exact pauliMatrix_contr_down_3
|
|
||||||
|
|
||||||
def pauliMatrixContrPauliMatrixMap := ((Sum.elim
|
|
||||||
((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
|
|
||||||
Fin.succAbove 0 ∘ Fin.succAbove 1) ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
|
|
||||||
Fin.succAbove 0 ∘ Fin.succAbove 2)
|
|
||||||
|
|
||||||
lemma pauliMatrix_contr_lower_0_0_0 :
|
|
||||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)) | μ α β ⊗
|
|
||||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
|
||||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
|
|
||||||
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
|
|
||||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
|
||||||
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
|
||||||
/- Simplifying. -/
|
|
||||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
|
||||||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
|
||||||
congr 1
|
|
||||||
· congr 1
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
· congr 1
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
|
|
||||||
lemma pauliMatrix_contr_lower_0_1_1 :
|
|
||||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)) | μ α β ⊗
|
|
||||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
|
||||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
|
||||||
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
|
|
||||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
|
||||||
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
|
||||||
/- Simplifying. -/
|
|
||||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
|
||||||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
|
||||||
congr 1
|
|
||||||
· congr 1
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
· congr 1
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
|
|
||||||
lemma pauliMatrix_contr_lower_1_0_1 :
|
|
||||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)) | μ α β ⊗
|
|
||||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
|
||||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
|
||||||
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
|
|
||||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
|
||||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
|
||||||
/- Simplifying. -/
|
|
||||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
|
||||||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
|
||||||
congr 1
|
|
||||||
· congr 1
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
· congr 1
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
|
|
||||||
lemma pauliMatrix_contr_lower_1_1_0 :
|
|
||||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)) | μ α β ⊗
|
|
||||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
|
||||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
|
||||||
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
|
|
||||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
|
||||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
|
||||||
/- Simplifying. -/
|
|
||||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
|
||||||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
|
||||||
congr 1
|
|
||||||
· congr 1
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
· congr 1
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
|
|
||||||
lemma pauliMatrix_contr_lower_2_0_1 :
|
|
||||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)) | μ α β ⊗
|
|
||||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
|
||||||
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
|
||||||
+ (I) •
|
|
||||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
|
|
||||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
|
||||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
|
||||||
/- Simplifying. -/
|
|
||||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
|
||||||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
|
||||||
congr 1
|
|
||||||
· congr 2
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
· congr 2
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
|
|
||||||
lemma pauliMatrix_contr_lower_2_1_0 :
|
|
||||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)) | μ α β ⊗
|
|
||||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
|
||||||
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
|
||||||
+ (I) •
|
|
||||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
|
|
||||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
|
||||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
|
||||||
/- Simplifying. -/
|
|
||||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
|
||||||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
|
||||||
congr 1
|
|
||||||
· congr 2
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
· congr 2
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
|
|
||||||
lemma pauliMatrix_contr_lower_3_0_0 :
|
|
||||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)) | μ α β ⊗
|
|
||||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
|
||||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
|
|
||||||
+ (-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap
|
|
||||||
(fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
|
|
||||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
|
||||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
|
|
||||||
/- Simplifying. -/
|
|
||||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
|
||||||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
|
||||||
congr 1
|
|
||||||
· congr 2
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
· congr 2
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
|
|
||||||
lemma pauliMatrix_contr_lower_3_1_1 :
|
|
||||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1)) | μ α β ⊗
|
|
||||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
|
||||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
|
||||||
+ (-1 : ℂ) •
|
|
||||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
|
|
||||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
|
||||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
|
||||||
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
|
|
||||||
/- Simplifying. -/
|
|
||||||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
|
||||||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
|
||||||
congr 1
|
|
||||||
· congr 2
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
· congr 2
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
|
|
||||||
lemma pauliMatrix_lower : {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
|
||||||
= basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
|
|
||||||
+ basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)
|
|
||||||
- basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
|
|
||||||
- basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)
|
|
||||||
+ I • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
|
|
||||||
- I • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)
|
|
||||||
- basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
|
|
||||||
+ basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
|
|
||||||
rw [contr_tensor_eq <| prod_tensor_eq_fst <| coMetric_basis_expand_tree]
|
|
||||||
/- Moving the prod through additions. -/
|
|
||||||
rw [contr_tensor_eq <| add_prod _ _ _]
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _]
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
|
||||||
/- Moving the prod through smuls. -/
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
|
|
||||||
<| smul_prod _ _ _]
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| smul_prod _ _ _]
|
|
||||||
/- Moving contraction through addition. -/
|
|
||||||
rw [contr_add]
|
|
||||||
rw [add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
/- Moving contraction through smul. -/
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_smul _ _]
|
|
||||||
/- Replacing the contractions. -/
|
|
||||||
rw [add_tensor_eq_fst <| pauliMatrix_contr_down_0_tree]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| pauliMatrix_contr_down_1_tree]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
|
|
||||||
pauliMatrix_contr_down_2_tree]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq <|
|
|
||||||
pauliMatrix_contr_down_3_tree]
|
|
||||||
/- Simplifying -/
|
|
||||||
simp only [add_tensor, smul_tensor, tensorNode_tensor, smul_add,_root_.smul_smul]
|
|
||||||
simp only [Nat.reduceAdd, Fin.isValue, neg_smul, one_smul, mul_neg, neg_mul, one_mul,
|
|
||||||
_root_.neg_neg, mul_one]
|
|
||||||
rfl
|
|
||||||
|
|
||||||
lemma pauliMatrix_lower_tree : {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
|
||||||
= (TensorTree.add (tensorNode
|
|
||||||
(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0))) <|
|
|
||||||
TensorTree.add (tensorNode
|
|
||||||
(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1))) <|
|
|
||||||
TensorTree.add (TensorTree.smul (-1) (tensorNode
|
|
||||||
(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))) <|
|
|
||||||
TensorTree.add (TensorTree.smul (-1) (tensorNode
|
|
||||||
(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))) <|
|
|
||||||
TensorTree.add (TensorTree.smul I (tensorNode
|
|
||||||
(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <|
|
|
||||||
TensorTree.add (TensorTree.smul (-I) (tensorNode
|
|
||||||
(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <|
|
|
||||||
TensorTree.add (TensorTree.smul (-1) (tensorNode
|
|
||||||
(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)))) <|
|
|
||||||
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1)))).tensor := by
|
|
||||||
rw [pauliMatrix_lower]
|
|
||||||
simp only [Nat.reduceAdd, Fin.isValue, add_tensor,
|
|
||||||
tensorNode_tensor, smul_tensor, neg_smul, one_smul]
|
|
||||||
rfl
|
|
||||||
|
|
||||||
lemma pauliMatrix_contract_pauliMatrix_aux :
|
|
||||||
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
|
|
||||||
PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor
|
|
||||||
= ((tensorNode
|
|
||||||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
|
|
||||||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)).add
|
|
||||||
((tensorNode
|
|
||||||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) +
|
|
||||||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1)).add
|
|
||||||
((TensorTree.smul (-1) (tensorNode
|
|
||||||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) +
|
|
||||||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0))).add
|
|
||||||
((TensorTree.smul (-1) (tensorNode
|
|
||||||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) +
|
|
||||||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add
|
|
||||||
((TensorTree.smul I (tensorNode
|
|
||||||
((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) +
|
|
||||||
I •
|
|
||||||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0))).add
|
|
||||||
((TensorTree.smul (-I) (tensorNode
|
|
||||||
((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) +
|
|
||||||
I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add
|
|
||||||
((TensorTree.smul (-1) (tensorNode
|
|
||||||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
|
|
||||||
(-1 : ℂ) •
|
|
||||||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1))).add
|
|
||||||
(tensorNode
|
(tensorNode
|
||||||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) +
|
(basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0)))).tensor := by
|
||||||
(-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap
|
rw [leftMetric_mul_rightMetric]
|
||||||
fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1))))))))).tensor := by
|
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor,
|
||||||
rw [contr_tensor_eq <| prod_tensor_eq_fst <| pauliMatrix_lower_tree]
|
smul_tensor, neg_smul, one_smul]
|
||||||
/- Moving the prod through additions. -/
|
rfl
|
||||||
rw [contr_tensor_eq <| add_prod _ _ _]
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _]
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_prod _ _ _]
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_prod _ _ _]
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
|
||||||
/- Moving the prod through smuls. -/
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
|
||||||
smul_prod _ _ _]
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_fst <| smul_prod _ _ _]
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
|
||||||
smul_prod _ _ _]
|
|
||||||
/- Moving contraction through addition. -/
|
|
||||||
rw [contr_add]
|
|
||||||
rw [add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
contr_add _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
/- Moving contraction through smul. -/
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
|
||||||
contr_smul _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_fst <| contr_smul _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
|
||||||
/- Replacing the contractions. -/
|
|
||||||
rw [add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_0_0_0]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <|
|
|
||||||
pauliMatrix_contr_lower_0_1_1]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
|
|
||||||
eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_0_1]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
|
||||||
smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_1_0]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <|
|
|
||||||
pauliMatrix_contr_lower_2_0_1]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor
|
|
||||||
<| pauliMatrix_contr_lower_2_1_0]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
|
|
||||||
eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_3_0_0]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| eq_tensorNode_of_eq_tensor <|
|
|
||||||
pauliMatrix_contr_lower_3_1_1]
|
|
||||||
|
|
||||||
lemma pauliMatrix_contract_pauliMatrix :
|
|
||||||
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
|
|
||||||
PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor =
|
|
||||||
2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)
|
|
||||||
+ 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
|
||||||
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
|
|
||||||
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) := by
|
|
||||||
rw [pauliMatrix_contract_pauliMatrix_aux]
|
|
||||||
simp only [Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, neg_smul,
|
|
||||||
one_smul, add_tensor, tensorNode_tensor, smul_tensor, smul_add, smul_neg, _root_.smul_smul,
|
|
||||||
neg_mul, _root_.neg_neg]
|
|
||||||
ring_nf
|
|
||||||
rw [Complex.I_sq]
|
|
||||||
simp only [neg_smul, one_smul, _root_.neg_neg]
|
|
||||||
abel
|
|
||||||
|
|
||||||
end Fermion
|
end Fermion
|
||||||
|
|
||||||
|
|
373
HepLean/Tensors/ComplexLorentz/PauliContr.lean
Normal file
373
HepLean/Tensors/ComplexLorentz/PauliContr.lean
Normal file
|
@ -0,0 +1,373 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Joseph Tooby-Smith
|
||||||
|
-/
|
||||||
|
import HepLean.Tensors.ComplexLorentz.PauliLower
|
||||||
|
import HepLean.Tensors.ComplexLorentz.Lemmas
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## Contractiong of indices of Pauli matrix.
|
||||||
|
|
||||||
|
The main result of this file is `pauliMatrix_contract_pauliMatrix` which states that
|
||||||
|
`η_{μν} σ^{μ α dot β} σ^{ν α' dot β'} = 2 ε^{αα'} ε^{dot β dot β'}`.
|
||||||
|
|
||||||
|
The current way this result is proved is by using tensor tree manipulations.
|
||||||
|
There is likely a more direct path to this result.
|
||||||
|
|
||||||
|
-/
|
||||||
|
open IndexNotation
|
||||||
|
open CategoryTheory
|
||||||
|
open MonoidalCategory
|
||||||
|
open Matrix
|
||||||
|
open MatrixGroups
|
||||||
|
open Complex
|
||||||
|
open TensorProduct
|
||||||
|
open IndexNotation
|
||||||
|
open CategoryTheory
|
||||||
|
open TensorTree
|
||||||
|
open OverColor.Discrete
|
||||||
|
noncomputable section
|
||||||
|
|
||||||
|
namespace Fermion
|
||||||
|
open complexLorentzTensor
|
||||||
|
|
||||||
|
/-- The map to colors one gets when contracting the 4-vector indices pauli matrices. -/
|
||||||
|
def pauliMatrixContrPauliMatrixMap := ((Sum.elim
|
||||||
|
((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
|
||||||
|
Fin.succAbove 0 ∘ Fin.succAbove 1) ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
|
||||||
|
Fin.succAbove 0 ∘ Fin.succAbove 2)
|
||||||
|
|
||||||
|
lemma pauliMatrix_contr_lower_0_0_0 :
|
||||||
|
{(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)) | μ α β ⊗
|
||||||
|
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||||
|
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
|
||||||
|
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
|
||||||
|
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||||
|
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||||||
|
/- Simplifying. -/
|
||||||
|
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||||
|
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||||||
|
congr 1
|
||||||
|
· congr 1
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
· congr 1
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
|
||||||
|
lemma pauliMatrix_contr_lower_0_1_1 :
|
||||||
|
{(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)) | μ α β ⊗
|
||||||
|
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||||
|
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
||||||
|
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
|
||||||
|
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||||
|
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||||||
|
/- Simplifying. -/
|
||||||
|
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||||
|
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||||||
|
congr 1
|
||||||
|
· congr 1
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
· congr 1
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
|
||||||
|
lemma pauliMatrix_contr_lower_1_0_1 :
|
||||||
|
{(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)) | μ α β ⊗
|
||||||
|
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||||
|
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||||||
|
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
|
||||||
|
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||||
|
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||||||
|
/- Simplifying. -/
|
||||||
|
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||||
|
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||||||
|
congr 1
|
||||||
|
· congr 1
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
· congr 1
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
|
||||||
|
lemma pauliMatrix_contr_lower_1_1_0 :
|
||||||
|
{(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)) | μ α β ⊗
|
||||||
|
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||||
|
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
||||||
|
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
|
||||||
|
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||||
|
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||||||
|
/- Simplifying. -/
|
||||||
|
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||||
|
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||||||
|
congr 1
|
||||||
|
· congr 1
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
· congr 1
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
|
||||||
|
lemma pauliMatrix_contr_lower_2_0_1 :
|
||||||
|
{(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)) | μ α β ⊗
|
||||||
|
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||||
|
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||||||
|
+ (I) •
|
||||||
|
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
|
||||||
|
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||||
|
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||||||
|
/- Simplifying. -/
|
||||||
|
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||||
|
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||||||
|
congr 1
|
||||||
|
· congr 2
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
· congr 2
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
|
||||||
|
lemma pauliMatrix_contr_lower_2_1_0 :
|
||||||
|
{(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)) | μ α β ⊗
|
||||||
|
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||||
|
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
||||||
|
+ (I) •
|
||||||
|
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
|
||||||
|
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||||
|
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||||||
|
/- Simplifying. -/
|
||||||
|
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||||
|
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||||||
|
congr 1
|
||||||
|
· congr 2
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
· congr 2
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
|
||||||
|
lemma pauliMatrix_contr_lower_3_0_0 :
|
||||||
|
{(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)) | μ α β ⊗
|
||||||
|
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||||
|
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
|
||||||
|
+ (-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap
|
||||||
|
(fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
|
||||||
|
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||||
|
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
|
||||||
|
/- Simplifying. -/
|
||||||
|
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||||
|
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||||||
|
congr 1
|
||||||
|
· congr 2
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
· congr 2
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
|
||||||
|
lemma pauliMatrix_contr_lower_3_1_1 :
|
||||||
|
{(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1)) | μ α β ⊗
|
||||||
|
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||||
|
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
||||||
|
+ (-1 : ℂ) •
|
||||||
|
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
|
||||||
|
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||||
|
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
|
||||||
|
/- Simplifying. -/
|
||||||
|
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||||
|
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||||||
|
congr 1
|
||||||
|
· congr 2
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
· congr 2
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
|
||||||
|
/-! TODO: Work out why `pauliMatrix_lower_basis_expand_prod'` is needed. -/
|
||||||
|
/-- This lemma is exactly the same as `pauliMatrix_lower_basis_expand_prod'`.
|
||||||
|
It is needed here for `pauliMatrix_contract_pauliMatrix_aux`. It is unclear why
|
||||||
|
`pauliMatrix_lower_basis_expand_prod` does not work. -/
|
||||||
|
private lemma pauliMatrix_lower_basis_expand_prod' {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
|
(t : TensorTree complexLorentzTensor c) :
|
||||||
|
(prod {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ t).tensor =
|
||||||
|
((((tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap fun | 0 => 0 | 1 => 0 | 2 => 0)).prod t).add
|
||||||
|
(((tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap fun | 0 => 0 | 1 => 1 | 2 => 1)).prod t).add
|
||||||
|
((TensorTree.smul (-1) ((tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap fun | 0 => 1 | 1 => 0 | 2 => 1)).prod t)).add
|
||||||
|
((TensorTree.smul (-1) ((tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap fun | 0 => 1 | 1 => 1 | 2 => 0)).prod t)).add
|
||||||
|
((TensorTree.smul I ((tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap fun | 0 => 2 | 1 => 0 | 2 => 1)).prod t)).add
|
||||||
|
((TensorTree.smul (-I) ((tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap fun | 0 => 2 | 1 => 1 | 2 => 0)).prod t)).add
|
||||||
|
((TensorTree.smul (-1) ((tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap fun | 0 => 3 | 1 => 0 | 2 => 0)).prod t)).add
|
||||||
|
((tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap fun | 0 => 3 | 1 => 1 | 2 => 1)).prod
|
||||||
|
t))))))))).tensor := by
|
||||||
|
exact pauliMatrix_lower_basis_expand_prod _
|
||||||
|
|
||||||
|
lemma pauliMatrix_contract_pauliMatrix_aux :
|
||||||
|
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
|
||||||
|
PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor
|
||||||
|
= ((tensorNode
|
||||||
|
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
|
||||||
|
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)).add
|
||||||
|
((tensorNode
|
||||||
|
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) +
|
||||||
|
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1)).add
|
||||||
|
((TensorTree.smul (-1) (tensorNode
|
||||||
|
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) +
|
||||||
|
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0))).add
|
||||||
|
((TensorTree.smul (-1) (tensorNode
|
||||||
|
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) +
|
||||||
|
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add
|
||||||
|
((TensorTree.smul I (tensorNode
|
||||||
|
((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) +
|
||||||
|
I •
|
||||||
|
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0))).add
|
||||||
|
((TensorTree.smul (-I) (tensorNode
|
||||||
|
((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) +
|
||||||
|
I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add
|
||||||
|
((TensorTree.smul (-1) (tensorNode
|
||||||
|
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
|
||||||
|
(-1 : ℂ) •
|
||||||
|
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1))).add
|
||||||
|
(tensorNode
|
||||||
|
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) +
|
||||||
|
(-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap
|
||||||
|
fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1))))))))).tensor := by
|
||||||
|
rw [contr_tensor_eq <| pauliMatrix_lower_basis_expand_prod' _]
|
||||||
|
/- Moving contraction through addition. -/
|
||||||
|
rw [contr_add]
|
||||||
|
rw [add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
contr_add _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
/- Moving contraction through smul. -/
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
||||||
|
contr_smul _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_fst <| contr_smul _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||||
|
/- Replacing the contractions. -/
|
||||||
|
rw [add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_0_0_0]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <|
|
||||||
|
pauliMatrix_contr_lower_0_1_1]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
|
||||||
|
eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_0_1]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
||||||
|
smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_1_0]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <|
|
||||||
|
pauliMatrix_contr_lower_2_0_1]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor
|
||||||
|
<| pauliMatrix_contr_lower_2_1_0]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
|
||||||
|
eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_3_0_0]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| eq_tensorNode_of_eq_tensor <|
|
||||||
|
pauliMatrix_contr_lower_3_1_1]
|
||||||
|
|
||||||
|
lemma pauliMatrix_contract_pauliMatrix_expand :
|
||||||
|
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
|
||||||
|
PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor =
|
||||||
|
2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)
|
||||||
|
+ 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
||||||
|
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
|
||||||
|
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) := by
|
||||||
|
rw [pauliMatrix_contract_pauliMatrix_aux]
|
||||||
|
simp only [Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, neg_smul,
|
||||||
|
one_smul, add_tensor, tensorNode_tensor, smul_tensor, smul_add, smul_neg, _root_.smul_smul,
|
||||||
|
neg_mul, _root_.neg_neg]
|
||||||
|
ring_nf
|
||||||
|
rw [Complex.I_sq]
|
||||||
|
simp only [neg_smul, one_smul, _root_.neg_neg]
|
||||||
|
abel
|
||||||
|
|
||||||
|
/-- The statement that `η_{μν} σ^{μ α dot β} σ^{ν α' dot β'} = 2 ε^{αα'} ε^{dot β dot β'}`. -/
|
||||||
|
theorem pauliMatrix_contract_pauliMatrix :
|
||||||
|
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
|
||||||
|
PauliMatrix.asConsTensor | ν α' β' =
|
||||||
|
2 •ₜ Fermion.leftMetric | α α' ⊗ Fermion.rightMetric | β β'}ᵀ := by
|
||||||
|
rw [pauliMatrix_contract_pauliMatrix_expand]
|
||||||
|
rw [perm_tensor_eq <| smul_tensor_eq <| leftMetric_mul_rightMetric_tree]
|
||||||
|
rw [perm_smul]
|
||||||
|
/- Moving perm through adds. -/
|
||||||
|
rw [smul_tensor_eq <| perm_add _ _ _]
|
||||||
|
rw [smul_tensor_eq <| add_tensor_eq_snd <| perm_add _ _ _]
|
||||||
|
rw [smul_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| perm_add _ _ _]
|
||||||
|
/- Moving perm through smul. -/
|
||||||
|
rw [smul_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_fst <| perm_smul _ _ _]
|
||||||
|
rw [smul_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_fst <| perm_smul _ _ _]
|
||||||
|
/- Perm acting on basis. -/
|
||||||
|
erw [smul_tensor_eq <| add_tensor_eq_fst <| perm_basisVector_tree _ _]
|
||||||
|
erw [smul_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
|
||||||
|
perm_basisVector_tree _ _]
|
||||||
|
erw [smul_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
||||||
|
smul_tensor_eq <| perm_basisVector_tree _ _]
|
||||||
|
erw [smul_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
perm_basisVector_tree _ _]
|
||||||
|
/- Simplifying. -/
|
||||||
|
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||||
|
have h1 (b0011 b1100 b0110 b1001 : CoeSort.coe (complexLorentzTensor.F.obj
|
||||||
|
(OverColor.mk pauliMatrixContrPauliMatrixMap))) :
|
||||||
|
((2 • b0011 + 2 • b1100) - 2 • b0110 - 2 • b1001) = (2 : ℂ) • ((b0011) +
|
||||||
|
(((-1 : ℂ)• b0110) + (((-1 : ℂ) •b1001) + b1100))) := by
|
||||||
|
trans (2 : ℂ) • b0011 + (2 : ℂ) • b1100 - ((2 : ℂ) • b0110) - ((2 : ℂ) • b1001)
|
||||||
|
· repeat rw [two_smul]
|
||||||
|
· simp only [neg_smul, one_smul, smul_add, smul_neg]
|
||||||
|
abel
|
||||||
|
rw [h1]
|
||||||
|
congr
|
||||||
|
· funext i
|
||||||
|
fin_cases i <;> rfl
|
||||||
|
· funext i
|
||||||
|
fin_cases i <;> rfl
|
||||||
|
· funext i
|
||||||
|
fin_cases i <;> rfl
|
||||||
|
· funext i
|
||||||
|
fin_cases i <;> rfl
|
||||||
|
|
||||||
|
end Fermion
|
257
HepLean/Tensors/ComplexLorentz/PauliLower.lean
Normal file
257
HepLean/Tensors/ComplexLorentz/PauliLower.lean
Normal file
|
@ -0,0 +1,257 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Joseph Tooby-Smith
|
||||||
|
-/
|
||||||
|
import HepLean.Tensors.ComplexLorentz.BasisTrees
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## Lowering indices of Pauli matrices.
|
||||||
|
|
||||||
|
-/
|
||||||
|
open IndexNotation
|
||||||
|
open CategoryTheory
|
||||||
|
open MonoidalCategory
|
||||||
|
open Matrix
|
||||||
|
open MatrixGroups
|
||||||
|
open Complex
|
||||||
|
open TensorProduct
|
||||||
|
open IndexNotation
|
||||||
|
open CategoryTheory
|
||||||
|
open TensorTree
|
||||||
|
open OverColor.Discrete
|
||||||
|
noncomputable section
|
||||||
|
|
||||||
|
namespace Fermion
|
||||||
|
open complexLorentzTensor
|
||||||
|
|
||||||
|
/-- The map to color one gets when lowering the indices of pauli matrices. -/
|
||||||
|
def pauliMatrixLowerMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘
|
||||||
|
⇑finSumFinEquiv.symm) ∘ Fin.succAbove 0 ∘ Fin.succAbove 1)
|
||||||
|
|
||||||
|
lemma pauliMatrix_contr_down_0 :
|
||||||
|
(contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
|
||||||
|
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||||
|
PauliMatrix.asConsTensor)))).tensor
|
||||||
|
= basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
|
||||||
|
+ basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1) := by
|
||||||
|
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||||
|
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||||||
|
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||||
|
simp only [one_smul, zero_smul, smul_zero, add_zero]
|
||||||
|
congr 1
|
||||||
|
· congr 1
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
· congr 1
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
|
||||||
|
lemma pauliMatrix_contr_down_0_tree :
|
||||||
|
(contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
|
||||||
|
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||||
|
PauliMatrix.asConsTensor)))).tensor
|
||||||
|
= (TensorTree.add (tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)))
|
||||||
|
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)))).tensor := by
|
||||||
|
exact pauliMatrix_contr_down_0
|
||||||
|
|
||||||
|
lemma pauliMatrix_contr_down_1 :
|
||||||
|
{(basisVector ![Color.down, Color.down] fun x => 1) | μ ν ⊗
|
||||||
|
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
||||||
|
= basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
|
||||||
|
+ basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by
|
||||||
|
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||||
|
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||||||
|
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||||
|
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||||||
|
congr 1
|
||||||
|
· congr 1
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
· congr 1
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
|
||||||
|
lemma pauliMatrix_contr_down_1_tree :
|
||||||
|
{(basisVector ![Color.down, Color.down] fun x => 1) | μ ν ⊗
|
||||||
|
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
||||||
|
= (TensorTree.add (tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))
|
||||||
|
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))).tensor := by
|
||||||
|
exact pauliMatrix_contr_down_1
|
||||||
|
|
||||||
|
lemma pauliMatrix_contr_down_2 :
|
||||||
|
{(basisVector ![Color.down, Color.down] fun x => 2) | μ ν ⊗
|
||||||
|
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
||||||
|
= (- I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
|
||||||
|
+ (I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0) := by
|
||||||
|
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||||
|
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||||||
|
/- Simplifying. -/
|
||||||
|
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||||
|
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||||||
|
congr 1
|
||||||
|
· congr 2
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
· congr 2
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
|
||||||
|
lemma pauliMatrix_contr_down_2_tree :
|
||||||
|
{(basisVector ![Color.down, Color.down] fun x => 2) | μ ν ⊗
|
||||||
|
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor =
|
||||||
|
(TensorTree.add
|
||||||
|
(smul (- I) (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1))))
|
||||||
|
(smul I (tensorNode (basisVector
|
||||||
|
pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0))))).tensor := by
|
||||||
|
exact pauliMatrix_contr_down_2
|
||||||
|
|
||||||
|
lemma pauliMatrix_contr_down_3 :
|
||||||
|
{(basisVector ![Color.down, Color.down] fun x => 3) | μ ν ⊗
|
||||||
|
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
||||||
|
= basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
|
||||||
|
+ (- 1 : ℂ) • basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
|
||||||
|
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||||
|
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||||
|
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
|
||||||
|
/- Simplifying. -/
|
||||||
|
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||||||
|
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||||||
|
congr 1
|
||||||
|
· congr 2
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
· congr 2
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
|
||||||
|
lemma pauliMatrix_contr_down_3_tree : {(basisVector ![Color.down, Color.down] fun x => 3) | μ ν ⊗
|
||||||
|
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor =
|
||||||
|
(TensorTree.add
|
||||||
|
((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0))))
|
||||||
|
(smul (-1) (tensorNode (basisVector pauliMatrixLowerMap
|
||||||
|
(fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by
|
||||||
|
exact pauliMatrix_contr_down_3
|
||||||
|
|
||||||
|
lemma pauliMatrix_lower : {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
||||||
|
= basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
|
||||||
|
+ basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)
|
||||||
|
- basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
|
||||||
|
- basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)
|
||||||
|
+ I • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
|
||||||
|
- I • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)
|
||||||
|
- basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
|
||||||
|
+ basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
|
||||||
|
rw [contr_tensor_eq <| prod_tensor_eq_fst <| coMetric_basis_expand_tree]
|
||||||
|
/- Moving the prod through additions. -/
|
||||||
|
rw [contr_tensor_eq <| add_prod _ _ _]
|
||||||
|
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _]
|
||||||
|
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||||||
|
/- Moving the prod through smuls. -/
|
||||||
|
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||||||
|
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
|
||||||
|
<| smul_prod _ _ _]
|
||||||
|
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| smul_prod _ _ _]
|
||||||
|
/- Moving contraction through addition. -/
|
||||||
|
rw [contr_add]
|
||||||
|
rw [add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
/- Moving contraction through smul. -/
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_smul _ _]
|
||||||
|
/- Replacing the contractions. -/
|
||||||
|
rw [add_tensor_eq_fst <| pauliMatrix_contr_down_0_tree]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| pauliMatrix_contr_down_1_tree]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
|
||||||
|
pauliMatrix_contr_down_2_tree]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq <|
|
||||||
|
pauliMatrix_contr_down_3_tree]
|
||||||
|
/- Simplifying -/
|
||||||
|
simp only [add_tensor, smul_tensor, tensorNode_tensor, smul_add,_root_.smul_smul]
|
||||||
|
simp only [Nat.reduceAdd, Fin.isValue, neg_smul, one_smul, mul_neg, neg_mul, one_mul,
|
||||||
|
_root_.neg_neg, mul_one]
|
||||||
|
rfl
|
||||||
|
|
||||||
|
lemma pauliMatrix_lower_tree : {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
||||||
|
= (TensorTree.add (tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0))) <|
|
||||||
|
TensorTree.add (tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1))) <|
|
||||||
|
TensorTree.add (TensorTree.smul (-1) (tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))) <|
|
||||||
|
TensorTree.add (TensorTree.smul (-1) (tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))) <|
|
||||||
|
TensorTree.add (TensorTree.smul I (tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <|
|
||||||
|
TensorTree.add (TensorTree.smul (-I) (tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <|
|
||||||
|
TensorTree.add (TensorTree.smul (-1) (tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)))) <|
|
||||||
|
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1)))).tensor := by
|
||||||
|
rw [pauliMatrix_lower]
|
||||||
|
simp only [Nat.reduceAdd, Fin.isValue, add_tensor,
|
||||||
|
tensorNode_tensor, smul_tensor, neg_smul, one_smul]
|
||||||
|
rfl
|
||||||
|
|
||||||
|
lemma pauliMatrix_lower_basis_expand_prod {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
|
(t : TensorTree complexLorentzTensor c) :
|
||||||
|
(prod {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ t).tensor =
|
||||||
|
(((tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap fun | 0 => 0 | 1 => 0 | 2 => 0)).prod t).add
|
||||||
|
(((tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap fun | 0 => 0 | 1 => 1 | 2 => 1)).prod t).add
|
||||||
|
((TensorTree.smul (-1) ((tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap fun | 0 => 1 | 1 => 0 | 2 => 1)).prod t)).add
|
||||||
|
((TensorTree.smul (-1) ((tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap fun | 0 => 1 | 1 => 1 | 2 => 0)).prod t)).add
|
||||||
|
((TensorTree.smul I ((tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap fun | 0 => 2 | 1 => 0 | 2 => 1)).prod t)).add
|
||||||
|
((TensorTree.smul (-I) ((tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap fun | 0 => 2 | 1 => 1 | 2 => 0)).prod t)).add
|
||||||
|
((TensorTree.smul (-1) ((tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap fun | 0 => 3 | 1 => 0 | 2 => 0)).prod t)).add
|
||||||
|
((tensorNode
|
||||||
|
(basisVector pauliMatrixLowerMap fun | 0 => 3 | 1 => 1 | 2 => 1)).prod
|
||||||
|
t)))))))).tensor := by
|
||||||
|
rw [prod_tensor_eq_fst <| pauliMatrix_lower_tree]
|
||||||
|
/- Moving the prod through additions. -/
|
||||||
|
rw [add_prod _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_prod _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_prod _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_prod _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||||||
|
/- Moving the prod through smuls. -/
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
||||||
|
smul_prod _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_fst <| smul_prod _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
||||||
|
smul_prod _ _ _]
|
||||||
|
|
||||||
|
end Fermion
|
|
@ -208,7 +208,7 @@ def discreteSumEquiv {X Y : OverColor C} (i : X.left ⊕ Y.left) :
|
||||||
| Sum.inr _ => LinearEquiv.refl _ _
|
| Sum.inr _ => LinearEquiv.refl _ _
|
||||||
|
|
||||||
/-- An equivalence used in the lemma of `μ_tmul_tprod_mk`. Identical to `μModEquiv`
|
/-- An equivalence used in the lemma of `μ_tmul_tprod_mk`. Identical to `μModEquiv`
|
||||||
except with arguments based on maps instead of elements of `OverColor C`. -/
|
except with arguments based on maps instead of elements of `OverColor C`. -/
|
||||||
def discreteSumEquiv' {X Y : Type} {cX : X → C} {cY : Y → C} (i : X ⊕ Y) :
|
def discreteSumEquiv' {X Y : Type} {cX : X → C} {cY : Y → C} (i : X ⊕ Y) :
|
||||||
Sum.elim (fun i => F.obj (Discrete.mk (cX i)))
|
Sum.elim (fun i => F.obj (Discrete.mk (cX i)))
|
||||||
(fun i => F.obj (Discrete.mk (cY i))) i ≃ₗ[k] F.obj (Discrete.mk ((Sum.elim cX cY) i)) :=
|
(fun i => F.obj (Discrete.mk (cY i))) i ≃ₗ[k] F.obj (Discrete.mk ((Sum.elim cX cY) i)) :=
|
||||||
|
@ -280,9 +280,12 @@ lemma μ_tmul_tprod_mk {X Y : Type} {cX : X → C} {cY : Y → C}
|
||||||
let q' : (i : (OverColor.mk cY).left) → (F.obj <| Discrete.mk ((OverColor.mk cY).hom i)) := q
|
let q' : (i : (OverColor.mk cY).left) → (F.obj <| Discrete.mk ((OverColor.mk cY).hom i)) := q
|
||||||
let p' : (i : (OverColor.mk cX).left) → (F.obj <| Discrete.mk ((OverColor.mk cX).hom i)) := p
|
let p' : (i : (OverColor.mk cX).left) → (F.obj <| Discrete.mk ((OverColor.mk cX).hom i)) := p
|
||||||
have h1 := μModEquiv_tmul_tprod F p' q'
|
have h1 := μModEquiv_tmul_tprod F p' q'
|
||||||
simp at h1
|
simp only [Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
|
||||||
|
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||||
|
objObj'_V_carrier, mk_hom, Functor.id_obj, instMonoidalCategoryStruct_tensorObj_hom] at h1
|
||||||
erw [h1]
|
erw [h1]
|
||||||
simp [p', q']
|
simp only [objObj'_V_carrier, instMonoidalCategoryStruct_tensorObj_left,
|
||||||
|
instMonoidalCategoryStruct_tensorObj_hom, mk_hom, p', q']
|
||||||
apply congrArg
|
apply congrArg
|
||||||
funext i
|
funext i
|
||||||
match i with
|
match i with
|
||||||
|
|
|
@ -250,7 +250,7 @@ def termNodeSyntax (T : Term) : TermElabM Term := do
|
||||||
return f T
|
return f T
|
||||||
| _ =>
|
| _ =>
|
||||||
match type with
|
match type with
|
||||||
| Expr.app _ (Expr.app _ (Expr.app _ c)) =>
|
| Expr.app _ (Expr.app _ (Expr.app _ _)) =>
|
||||||
return Syntax.mkApp (mkIdent ``TensorTree.tensorNode) #[T]
|
return Syntax.mkApp (mkIdent ``TensorTree.tensorNode) #[T]
|
||||||
| _ => return Syntax.mkApp (mkIdent ``TensorTree.vecNode) #[T]
|
| _ => return Syntax.mkApp (mkIdent ``TensorTree.vecNode) #[T]
|
||||||
|
|
||||||
|
|
|
@ -125,7 +125,7 @@ These identities are related to the fact that all the maps are linear.
|
||||||
|
|
||||||
lemma smul_smul (t : TensorTree S c) (a b : S.k) :
|
lemma smul_smul (t : TensorTree S c) (a b : S.k) :
|
||||||
(smul a (smul b t)).tensor = (smul (a * b) t).tensor := by
|
(smul a (smul b t)).tensor = (smul (a * b) t).tensor := by
|
||||||
simp [smul_tensor]
|
simp only [smul_tensor]
|
||||||
exact _root_.smul_smul a b t.tensor
|
exact _root_.smul_smul a b t.tensor
|
||||||
|
|
||||||
lemma smul_one (t : TensorTree S c) :
|
lemma smul_one (t : TensorTree S c) :
|
||||||
|
@ -150,11 +150,21 @@ lemma add_assoc (t1 t2 t3 : TensorTree S c) :
|
||||||
|
|
||||||
/-- When the same permutation acts on both arguments of an addition, the permutation
|
/-- When the same permutation acts on both arguments of an addition, the permutation
|
||||||
can be moved out of the addition. -/
|
can be moved out of the addition. -/
|
||||||
lemma add_perm {n : ℕ} {c : Fin n → S.C} {c1 : Fin n → S.C}
|
lemma add_perm {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
||||||
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t t1 : TensorTree S c) :
|
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t t1 : TensorTree S c) :
|
||||||
(add (perm σ t) (perm σ t1)).tensor = (perm σ (add t t1)).tensor := by
|
(add (perm σ t) (perm σ t1)).tensor = (perm σ (add t t1)).tensor := by
|
||||||
simp only [add_tensor, perm_tensor, map_add]
|
simp only [add_tensor, perm_tensor, map_add]
|
||||||
|
|
||||||
|
lemma perm_add {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
||||||
|
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t t1 : TensorTree S c) :
|
||||||
|
(perm σ (add t t1)).tensor = (add (perm σ t) (perm σ t1)).tensor := by
|
||||||
|
simp only [add_tensor, perm_tensor, map_add]
|
||||||
|
|
||||||
|
lemma perm_smul {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
||||||
|
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (a : S.k) (t : TensorTree S c) :
|
||||||
|
(perm σ (smul a t)).tensor = (smul a (perm σ t)).tensor := by
|
||||||
|
simp only [smul_tensor, perm_tensor, map_smul]
|
||||||
|
|
||||||
/-- When the same evaluation acts on both arguments of an addition, the evaluation
|
/-- When the same evaluation acts on both arguments of an addition, the evaluation
|
||||||
can be moved out of the addition. -/
|
can be moved out of the addition. -/
|
||||||
lemma add_eval {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : ℕ) (t t1 : TensorTree S c) :
|
lemma add_eval {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : ℕ) (t t1 : TensorTree S c) :
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue