refactor: Lint

This commit is contained in:
jstoobysmith 2024-10-24 12:08:35 +00:00
parent 1e8efdb16a
commit c9c7b25ea8
9 changed files with 946 additions and 696 deletions

View file

@ -109,7 +109,10 @@ import HepLean.StandardModel.HiggsBoson.Potential
import HepLean.StandardModel.Representations
import HepLean.Tensors.ComplexLorentz.Basic
import HepLean.Tensors.ComplexLorentz.Basis
import HepLean.Tensors.ComplexLorentz.BasisTrees
import HepLean.Tensors.ComplexLorentz.Lemmas
import HepLean.Tensors.ComplexLorentz.PauliContr
import HepLean.Tensors.ComplexLorentz.PauliLower
import HepLean.Tensors.OverColor.Basic
import HepLean.Tensors.OverColor.Discrete
import HepLean.Tensors.OverColor.Functors

View file

@ -79,6 +79,15 @@ lemma perm_basisVector {n m : } {c : Fin n → complexLorentzTensor.C}
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, LinearEquiv.ofLinear_apply]
rw [basis_eq_FDiscrete]
lemma perm_basisVector_tree {n m : } {c : Fin n → complexLorentzTensor.C}
{c1 : Fin m → complexLorentzTensor.C} (σ : OverColor.mk c ⟶ OverColor.mk c1)
(b : Π j, Fin (complexLorentzTensor.repDim (c j))) :
(perm σ (tensorNode (basisVector c b))).tensor =
(tensorNode (basisVector c1 (fun i => Fin.cast (perm_basisVector_cast σ i)
(b ((OverColor.Hom.toEquiv σ).symm i))))).tensor := by
exact perm_basisVector _ _
/-- The scalar determining if contracting two basis vectors together gives zero or not. -/
def contrBasisVectorMul {n : } {c : Fin n.succ.succ → complexLorentzTensor.C}
(i : Fin n.succ.succ) (j : Fin n.succ)
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) : :=
@ -89,7 +98,7 @@ lemma contrBasisVectorMul_neg {n : } {c : Fin n.succ.succ → complexLorentzT
(h : ¬ (b i).val = (b (i.succAbove j)).val := by decide) :
contrBasisVectorMul i j b = 0 := by
rw [contrBasisVectorMul]
simp
simp only [ite_eq_else, one_ne_zero, imp_false]
exact h
lemma contrBasisVectorMul_pos {n : } {c : Fin n.succ.succ → complexLorentzTensor.C}
@ -97,7 +106,7 @@ lemma contrBasisVectorMul_pos {n : } {c : Fin n.succ.succ → complexLorentzT
(h : (b i).val = (b (i.succAbove j)).val := by decide) :
contrBasisVectorMul i j b = 1 := by
rw [contrBasisVectorMul]
simp
simp only [ite_eq_then, zero_ne_one, imp_false, Decidable.not_not]
exact h
lemma contr_basisVector {n : } {c : Fin n.succ.succ → complexLorentzTensor.C}
@ -123,13 +132,15 @@ lemma contr_basisVector_tree {n : } {c : Fin n.succ.succ → complexLorentzT
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = complexLorentzTensor.τ (c i)}
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
(contr i j h (tensorNode (basisVector c b))).tensor =
(smul (contrBasisVectorMul i j b) (tensorNode ( basisVector (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
(smul (contrBasisVectorMul i j b) (tensorNode
(basisVector (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
(fun k => b (i.succAbove (j.succAbove k)))))).tensor := by
exact contr_basisVector _
lemma contr_basisVector_tree_pos {n : } {c : Fin n.succ.succ → complexLorentzTensor.C}
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = complexLorentzTensor.τ (c i)}
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) (hn : (b i).val = (b (i.succAbove j)).val := by decide) :
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
(hn : (b i).val = (b (i.succAbove j)).val := by decide) :
(contr i j h (tensorNode (basisVector c b))).tensor =
((tensorNode (basisVector (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
(fun k => b (i.succAbove (j.succAbove k)))))).tensor := by
@ -139,17 +150,19 @@ lemma contr_basisVector_tree_pos {n : } {c : Fin n.succ.succ → complexLore
lemma contr_basisVector_tree_neg {n : } {c : Fin n.succ.succ → complexLorentzTensor.C}
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = complexLorentzTensor.τ (c i)}
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) (hn : ¬ (b i).val = (b (i.succAbove j)).val := by decide) :
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
(hn : ¬ (b i).val = (b (i.succAbove j)).val := by decide) :
(contr i j h (tensorNode (basisVector c b))).tensor =
(tensorNode 0).tensor := by
rw [contr_basisVector_tree, contrBasisVectorMul]
rw [if_neg hn]
simp [smul_tensor]
simp only [Nat.succ_eq_add_one, smul_tensor, tensorNode_tensor, zero_smul]
/-- Equivalence of Fin types appearing in the product of two basis vectors. -/
def prodBasisVecEquiv {n m : } {c : Fin n → complexLorentzTensor.C}
{c1 : Fin m → complexLorentzTensor.C} (i : Fin n ⊕ Fin m) :
Sum.elim (fun i => Fin (complexLorentzTensor.repDim (c i))) (fun i => Fin (complexLorentzTensor.repDim (c1 i)))
Sum.elim (fun i => Fin (complexLorentzTensor.repDim (c i))) (fun i =>
Fin (complexLorentzTensor.repDim (c1 i)))
i ≃ Fin (complexLorentzTensor.repDim ((Sum.elim c c1 i))) :=
match i with
| Sum.inl _ => Equiv.refl _
@ -299,7 +312,8 @@ lemma leftMetric_expand : {Fermion.leftMetric | α β}ᵀ.tensor =
· rfl
lemma leftMetric_expand_tree : {Fermion.leftMetric | α β}ᵀ.tensor =
(TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.upL, Color.upL] (fun | 0 => 0 | 1 => 1)))) <|
(TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.upL, Color.upL]
(fun | 0 => 0 | 1 => 1)))) <|
(tensorNode (basisVector ![Color.upL, Color.upL] (fun | 0 => 1 | 1 => 0)))).tensor :=
leftMetric_expand
@ -320,8 +334,10 @@ lemma altLeftMetric_expand : {Fermion.altLeftMetric | α β}ᵀ.tensor =
· rfl
lemma altLeftMetric_expand_tree : {Fermion.altLeftMetric | α β}ᵀ.tensor =
(TensorTree.add (tensorNode (basisVector ![Color.downL, Color.downL] (fun | 0 => 0 | 1 => 1))) <|
(smul (-1) (tensorNode (basisVector ![Color.downL, Color.downL] (fun | 0 => 1 | 1 => 0))))).tensor :=
(TensorTree.add (tensorNode (basisVector ![Color.downL, Color.downL]
(fun | 0 => 0 | 1 => 1))) <|
(smul (-1) (tensorNode (basisVector ![Color.downL, Color.downL]
(fun | 0 => 1 | 1 => 0))))).tensor :=
altLeftMetric_expand
lemma rightMetric_expand : {Fermion.rightMetric | α β}ᵀ.tensor =
@ -342,7 +358,8 @@ lemma rightMetric_expand : {Fermion.rightMetric | α β}ᵀ.tensor =
· rfl
lemma rightMetric_expand_tree : {Fermion.rightMetric | α β}ᵀ.tensor =
(TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.upR, Color.upR] (fun | 0 => 0 | 1 => 1)))) <|
(TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.upR, Color.upR]
(fun | 0 => 0 | 1 => 1)))) <|
(tensorNode (basisVector ![Color.upR, Color.upR] (fun | 0 => 1 | 1 => 0)))).tensor :=
rightMetric_expand
@ -363,8 +380,10 @@ lemma altRightMetric_expand : {Fermion.altRightMetric | α β}ᵀ.tensor =
· rfl
lemma altRightMetric_expand_tree : {Fermion.altRightMetric | α β}ᵀ.tensor =
(TensorTree.add (tensorNode (basisVector ![Color.downR, Color.downR] (fun | 0 => 0 | 1 => 1))) <|
(smul (-1) (tensorNode (basisVector ![Color.downR, Color.downR] (fun | 0 => 1 | 1 => 0))))).tensor :=
(TensorTree.add (tensorNode (basisVector
![Color.downR, Color.downR] (fun | 0 => 0 | 1 => 1))) <|
(smul (-1) (tensorNode (basisVector ![Color.downR, Color.downR]
(fun | 0 => 1 | 1 => 0))))).tensor :=
altRightMetric_expand
/-- The expansion of the Pauli matrices `σ^μ^a^{dot a}` in terms of basis vectors. -/
@ -421,7 +440,8 @@ lemma pauliMatrix_basis_expand_tree : {PauliMatrix.asConsTensor | μ α β}ᵀ.t
TensorTree.add (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 0 | 2 => 0))) <|
(smul (-1) (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by
(basisVector ![Color.up, Color.upL, Color.upR]
(fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by
rw [pauliMatrix_basis_expand]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor,
smul_tensor, neg_smul, one_smul]

View file

@ -0,0 +1,233 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.Tree.Elab
import HepLean.Tensors.ComplexLorentz.Basic
import Mathlib.LinearAlgebra.TensorProduct.Basis
import HepLean.Tensors.Tree.NodeIdentities.Basic
import HepLean.Tensors.Tree.NodeIdentities.PermProd
import HepLean.Tensors.Tree.NodeIdentities.PermContr
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
import HepLean.Tensors.ComplexLorentz.Basis
/-!
## Basis trees
When contracting e.g. Pauli matrices with other tensors, it is sometimes convienent
to rewrite the contraction in terms of a basis.
The lemmas in this file allow us to do this.
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open IndexNotation
open CategoryTheory
open TensorTree
open OverColor.Discrete
noncomputable section
namespace Fermion
open complexLorentzTensor
/-!
## Tree expansions for Pauli matrices.
-/
/-- The map to colors one gets when contracting with Pauli matrices on the right. -/
abbrev pauliMatrixContrMap {n : } (c : Fin n → complexLorentzTensor.C) :=
(Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm)
lemma prod_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C}
(t : TensorTree complexLorentzTensor c) :
(TensorTree.prod t (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)).tensor = (((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
(((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
(((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
(((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
((TensorTree.smul (-I) ((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
((TensorTree.smul I ((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0))).add
(TensorTree.smul (-1) (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR]
fun | 0 => 3 | 1 => 1 | 2 => 1))))))))))).tensor := by
rw [prod_tensor_eq_snd <| pauliMatrix_basis_expand_tree]
rw [prod_add _ _ _]
rw [add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
/- Moving smuls. -/
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd<| add_tensor_eq_snd
<| add_tensor_eq_snd <| prod_smul _ _ _]
rfl
lemma contr_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C}
(t : TensorTree complexLorentzTensor c) (i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) =
complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) :
(contr i j h (TensorTree.prod t
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor))).tensor =
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
((TensorTree.smul (-I) (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
((TensorTree.smul I (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0)))).add
(TensorTree.smul (-1) (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR]
fun | 0 => 3 | 1 => 1 | 2 => 1)))))))))))).tensor := by
rw [contr_tensor_eq <| prod_pauliMatrix_basis_tree_expand _]
/- Moving contr over add. -/
rw [contr_add]
rw [add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
/- Moving contr over smul. -/
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
contr_smul _ _]
lemma basis_contr_pauliMatrix_basis_tree_expand' {n : } {c : Fin n → complexLorentzTensor.C}
(i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
((pauliMatrixContrMap c) i))
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
let c' := Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm
let b' (i1 i2 i3 : Fin 4) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
((HepLean.PiTensorProduct.elimPureTensor b (fun | 0 => i1 | 1 => i2 | 2 => i3))
(finSumFinEquiv.symm i))
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor))).tensor = ((contr i j h ((tensorNode
(basisVector c' (b' 0 0 0))))).add
((contr i j h ((tensorNode (basisVector c' (b' 0 1 1))))).add
((contr i j h ((tensorNode (basisVector c' (b' 1 0 1))))).add
((contr i j h ((tensorNode (basisVector c' (b' 1 1 0))))).add
((TensorTree.smul (-I) (contr i j h ((tensorNode (basisVector c' (b' 2 0 1)))))).add
((TensorTree.smul I (contr i j h ((tensorNode (basisVector c' (b' 2 1 0)))))).add
((contr i j h ((tensorNode (basisVector c' (b' 3 0 0))))).add
(TensorTree.smul (-1) (contr i j h ((tensorNode
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
rw [contr_pauliMatrix_basis_tree_expand]
/- Product of basis vectors . -/
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rfl
lemma basis_contr_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C}
(i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
((pauliMatrixContrMap c) i))
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
∘ Fin.succAbove i ∘ Fin.succAbove j
let b'' (i1 i2 i3 : Fin 4) : (i : Fin (n + (Nat.succ 0).succ.succ)) →
Fin (complexLorentzTensor.repDim (Sum.elim c ![Color.up, Color.upL, Color.upR]
(finSumFinEquiv.symm i))) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3))
(finSumFinEquiv.symm i))
let b' (i1 i2 i3 : Fin 4) := fun k => (b'' i1 i2 i3) (i.succAbove (j.succAbove k))
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor))).tensor = (((
TensorTree.smul (contrBasisVectorMul i j (b'' 0 0 0))
(tensorNode (basisVector c' (b' 0 0 0))))).add
(((TensorTree.smul (contrBasisVectorMul i j (b'' 0 1 1))
(tensorNode (basisVector c' (b' 0 1 1))))).add
(((TensorTree.smul (contrBasisVectorMul i j (b'' 1 0 1))
(tensorNode (basisVector c' (b' 1 0 1))))).add
(((TensorTree.smul (contrBasisVectorMul i j (b'' 1 1 0))
(tensorNode (basisVector c' (b' 1 1 0))))).add
((TensorTree.smul (-I) ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 0 1))
(tensorNode (basisVector c' (b' 2 0 1)))))).add
((TensorTree.smul I ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 1 0))
(tensorNode (basisVector c' (b' 2 1 0)))))).add
(((TensorTree.smul (contrBasisVectorMul i j (b'' 3 0 0))
(tensorNode (basisVector c' (b' 3 0 0))))).add
(TensorTree.smul (-1) ((TensorTree.smul (contrBasisVectorMul i j (b'' 3 1 1)) (tensorNode
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
rw [basis_contr_pauliMatrix_basis_tree_expand']
/- Contracting basis vectors. -/
rw [add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
<| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
smul_tensor_eq <| contr_basisVector_tree _]
end Fermion
end

View file

@ -3,17 +3,7 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.Tree.Elab
import HepLean.Tensors.ComplexLorentz.Basic
import Mathlib.LinearAlgebra.TensorProduct.Basis
import HepLean.Tensors.Tree.NodeIdentities.Basic
import HepLean.Tensors.Tree.NodeIdentities.PermProd
import HepLean.Tensors.Tree.NodeIdentities.PermContr
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
import HepLean.Tensors.ComplexLorentz.Basis
import LLMLean
import HepLean.Tensors.ComplexLorentz.BasisTrees
/-!
## Lemmas related to complex Lorentz tensors.
@ -33,7 +23,7 @@ open OverColor.Discrete
noncomputable section
namespace Fermion
open complexLorentzTensor
set_option maxRecDepth 20000 in
lemma contr_rank_2_symm {T1 : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
{T2 : (Lorentz.complexCo ⊗ Lorentz.complexCo).V} :
@ -117,8 +107,8 @@ lemma antiSymm_add_self {A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
And related results.
-/
open complexLorentzTensor
/-- The map to color one gets when multiplying left and right metrics. -/
def leftMetricMulRightMap := (Sum.elim ![Color.upL, Color.upL] ![Color.upR, Color.upR]) ∘
finSumFinEquiv.symm
@ -154,659 +144,20 @@ lemma leftMetric_mul_rightMetric : {Fermion.leftMetric | α α' ⊗ Fermion.righ
funext x
fin_cases x <;> rfl
def pauliMatrixLowerMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘
⇑finSumFinEquiv.symm) ∘ Fin.succAbove 0 ∘ Fin.succAbove 1)
abbrev pauliMatrixContrMap {n : } (c : Fin n → complexLorentzTensor.C) :=
(Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm)
lemma prod_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C}
(t : TensorTree complexLorentzTensor c) :
(TensorTree.prod t (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)).tensor = (((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
(((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
(((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
(((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
((TensorTree.smul (-I) ((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
((TensorTree.smul I ((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0))).add
(TensorTree.smul (-1) (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR]
fun | 0 => 3 | 1 => 1 | 2 => 1))))))))))).tensor := by
rw [prod_tensor_eq_snd <| pauliMatrix_basis_expand_tree]
rw [prod_add _ _ _]
rw [add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
/- Moving smuls. -/
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd<| add_tensor_eq_snd
<| add_tensor_eq_snd <| prod_smul _ _ _]
rfl
lemma contr_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C}
(t : TensorTree complexLorentzTensor c) (i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) =
complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) :
(contr i j h (TensorTree.prod t
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor))).tensor =
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
((TensorTree.smul (-I) (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
((TensorTree.smul I (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0)))).add
(TensorTree.smul (-1) (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR]
fun | 0 => 3 | 1 => 1 | 2 => 1)))))))))))).tensor := by
rw [contr_tensor_eq <| prod_pauliMatrix_basis_tree_expand _]
/- Moving contr over add. -/
rw [contr_add]
rw [add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
/- Moving contr over smul. -/
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
contr_smul _ _]
lemma basis_contr_pauliMatrix_basis_tree_expand' {n : } {c : Fin n → complexLorentzTensor.C}
(i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
((pauliMatrixContrMap c) i))
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
let c' := Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm
let b' (i1 i2 i3 : Fin 4) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
((HepLean.PiTensorProduct.elimPureTensor b (fun | 0 => i1 | 1 => i2 | 2 => i3))
(finSumFinEquiv.symm i))
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor))).tensor = ((contr i j h ((tensorNode
(basisVector c' (b' 0 0 0))))).add
((contr i j h ((tensorNode (basisVector c' (b' 0 1 1))))).add
((contr i j h ((tensorNode (basisVector c' (b' 1 0 1))))).add
((contr i j h ((tensorNode (basisVector c' (b' 1 1 0))))).add
((TensorTree.smul (-I) (contr i j h ((tensorNode (basisVector c' (b' 2 0 1)))))).add
((TensorTree.smul I (contr i j h ((tensorNode (basisVector c' (b' 2 1 0)))))).add
((contr i j h ((tensorNode (basisVector c' (b' 3 0 0))))).add
(TensorTree.smul (-1) (contr i j h ((tensorNode
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
rw [contr_pauliMatrix_basis_tree_expand]
/- Product of basis vectors . -/
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rfl
lemma basis_contr_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C}
(i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
((pauliMatrixContrMap c) i))
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
∘ Fin.succAbove i ∘ Fin.succAbove j
let b'' (i1 i2 i3 : Fin 4) : (i : Fin (n + (Nat.succ 0).succ.succ)) →
Fin (complexLorentzTensor.repDim (Sum.elim c ![Color.up, Color.upL, Color.upR]
(finSumFinEquiv.symm i))) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3))
(finSumFinEquiv.symm i))
let b' (i1 i2 i3 : Fin 4) := fun k => (b'' i1 i2 i3) (i.succAbove (j.succAbove k))
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor))).tensor = (((
TensorTree.smul (contrBasisVectorMul i j (b'' 0 0 0))
(tensorNode (basisVector c' (b' 0 0 0))))).add
(((TensorTree.smul (contrBasisVectorMul i j (b'' 0 1 1))
(tensorNode (basisVector c' (b' 0 1 1))))).add
(((TensorTree.smul (contrBasisVectorMul i j (b'' 1 0 1))
(tensorNode (basisVector c' (b' 1 0 1))))).add
(((TensorTree.smul (contrBasisVectorMul i j (b'' 1 1 0))
(tensorNode (basisVector c' (b' 1 1 0))))).add
((TensorTree.smul (-I) ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 0 1))
(tensorNode (basisVector c' (b' 2 0 1)))))).add
((TensorTree.smul I ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 1 0))
(tensorNode (basisVector c' (b' 2 1 0)))))).add
(((TensorTree.smul (contrBasisVectorMul i j (b'' 3 0 0))
(tensorNode (basisVector c' (b' 3 0 0))))).add
(TensorTree.smul (-1) ((TensorTree.smul (contrBasisVectorMul i j (b'' 3 1 1)) (tensorNode
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
rw [basis_contr_pauliMatrix_basis_tree_expand']
/- Contracting basis vectors. -/
rw [add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
<| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
smul_tensor_eq <| contr_basisVector_tree _]
lemma pauliMatrix_contr_down_0 :
(contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor
= basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
+ basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [one_smul, zero_smul, smul_zero, add_zero]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_0_tree :
(contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor
lemma leftMetric_mul_rightMetric_tree :
{Fermion.leftMetric | α α' ⊗ Fermion.rightMetric | β β'}ᵀ.tensor
= (TensorTree.add (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)))
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)))).tensor := by
exact pauliMatrix_contr_down_0
lemma pauliMatrix_contr_down_1 :
{(basisVector ![Color.down, Color.down] fun x => 1) | μ ν
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
= basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
+ basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_1_tree :
{(basisVector ![Color.down, Color.down] fun x => 1) | μ ν
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
= (TensorTree.add (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))).tensor := by
exact pauliMatrix_contr_down_1
lemma pauliMatrix_contr_down_2 :
{(basisVector ![Color.down, Color.down] fun x => 2) | μ ν
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
= (- I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
+ (I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_2_tree :
{(basisVector ![Color.down, Color.down] fun x => 2) | μ ν
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor =
(TensorTree.add
(smul (- I) (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1))))
(smul I (tensorNode (basisVector
pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0))))).tensor := by
exact pauliMatrix_contr_down_2
lemma pauliMatrix_contr_down_3 :
{(basisVector ![Color.down, Color.down] fun x => 3) | μ ν
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
= basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
+ (- 1 : ) • basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_3_tree : {(basisVector ![Color.down, Color.down] fun x => 3) | μ ν
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor =
(TensorTree.add
((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0))))
(smul (-1) (tensorNode (basisVector pauliMatrixLowerMap
(fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by
exact pauliMatrix_contr_down_3
def pauliMatrixContrPauliMatrixMap := ((Sum.elim
((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
Fin.succAbove 0 ∘ Fin.succAbove 1) ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
Fin.succAbove 0 ∘ Fin.succAbove 2)
lemma pauliMatrix_contr_lower_0_0_0 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_0_1_1 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_1_0_1 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_1_1_0 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_2_0_1 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
+ (I) •
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_2_1_0 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
+ (I) •
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_3_0_0 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
+ (-1 : ) • basisVector pauliMatrixContrPauliMatrixMap
(fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_3_1_1 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
+ (-1 : ) •
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_lower : {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
= basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
+ basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)
- basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
- basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)
+ I • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
- I • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)
- basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
+ basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
rw [contr_tensor_eq <| prod_tensor_eq_fst <| coMetric_basis_expand_tree]
/- Moving the prod through additions. -/
rw [contr_tensor_eq <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
/- Moving the prod through smuls. -/
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| smul_prod _ _ _]
/- Moving contraction through addition. -/
rw [contr_add]
rw [add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
/- Moving contraction through smul. -/
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_smul _ _]
/- Replacing the contractions. -/
rw [add_tensor_eq_fst <| pauliMatrix_contr_down_0_tree]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| pauliMatrix_contr_down_1_tree]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
pauliMatrix_contr_down_2_tree]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq <|
pauliMatrix_contr_down_3_tree]
/- Simplifying -/
simp only [add_tensor, smul_tensor, tensorNode_tensor, smul_add,_root_.smul_smul]
simp only [Nat.reduceAdd, Fin.isValue, neg_smul, one_smul, mul_neg, neg_mul, one_mul,
_root_.neg_neg, mul_one]
rfl
lemma pauliMatrix_lower_tree : {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
= (TensorTree.add (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0))) <|
TensorTree.add (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1))) <|
TensorTree.add (TensorTree.smul (-1) (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))) <|
TensorTree.add (TensorTree.smul (-1) (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))) <|
TensorTree.add (TensorTree.smul I (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <|
TensorTree.add (TensorTree.smul (-I) (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <|
TensorTree.add (TensorTree.smul (-1) (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)))) <|
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1)))).tensor := by
rw [pauliMatrix_lower]
simp only [Nat.reduceAdd, Fin.isValue, add_tensor,
tensorNode_tensor, smul_tensor, neg_smul, one_smul]
rfl
lemma pauliMatrix_contract_pauliMatrix_aux :
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor
= ((tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)).add
((tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) +
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1)).add
((TensorTree.smul (-1) (tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) +
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0))).add
((TensorTree.smul (-1) (tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) +
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add
((TensorTree.smul I (tensorNode
((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) +
I •
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0))).add
((TensorTree.smul (-I) (tensorNode
((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) +
I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add
((TensorTree.smul (-1) (tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
(-1 : ) •
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1))).add
(basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1))) <|
TensorTree.add (TensorTree.smul (-1 : ) (tensorNode
(basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)))) <|
TensorTree.add (TensorTree.smul (-1 : ) (tensorNode
(basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)))) <|
(tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) +
(-1 : ) • basisVector pauliMatrixContrPauliMatrixMap
fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1))))))))).tensor := by
rw [contr_tensor_eq <| prod_tensor_eq_fst <| pauliMatrix_lower_tree]
/- Moving the prod through additions. -/
rw [contr_tensor_eq <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
/- Moving the prod through smuls. -/
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_fst <| smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
smul_prod _ _ _]
/- Moving contraction through addition. -/
rw [contr_add]
rw [add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
/- Moving contraction through smul. -/
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
/- Replacing the contractions. -/
rw [add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_0_0_0]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <|
pauliMatrix_contr_lower_0_1_1]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_0_1]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_1_0]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <|
pauliMatrix_contr_lower_2_0_1]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor
<| pauliMatrix_contr_lower_2_1_0]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_3_0_0]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| eq_tensorNode_of_eq_tensor <|
pauliMatrix_contr_lower_3_1_1]
lemma pauliMatrix_contract_pauliMatrix :
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor =
2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)
+ 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) := by
rw [pauliMatrix_contract_pauliMatrix_aux]
simp only [Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, neg_smul,
one_smul, add_tensor, tensorNode_tensor, smul_tensor, smul_add, smul_neg, _root_.smul_smul,
neg_mul, _root_.neg_neg]
ring_nf
rw [Complex.I_sq]
simp only [neg_smul, one_smul, _root_.neg_neg]
abel
(basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0)))).tensor := by
rw [leftMetric_mul_rightMetric]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor,
smul_tensor, neg_smul, one_smul]
rfl
end Fermion

View file

@ -0,0 +1,373 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.ComplexLorentz.PauliLower
import HepLean.Tensors.ComplexLorentz.Lemmas
/-!
## Contractiong of indices of Pauli matrix.
The main result of this file is `pauliMatrix_contract_pauliMatrix` which states that
`η_{μν} σ^{μ α dot β} σ^{ν α' dot β'} = 2 ε^{αα'} ε^{dot β dot β'}`.
The current way this result is proved is by using tensor tree manipulations.
There is likely a more direct path to this result.
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open IndexNotation
open CategoryTheory
open TensorTree
open OverColor.Discrete
noncomputable section
namespace Fermion
open complexLorentzTensor
/-- The map to colors one gets when contracting the 4-vector indices pauli matrices. -/
def pauliMatrixContrPauliMatrixMap := ((Sum.elim
((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
Fin.succAbove 0 ∘ Fin.succAbove 1) ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
Fin.succAbove 0 ∘ Fin.succAbove 2)
lemma pauliMatrix_contr_lower_0_0_0 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_0_1_1 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_1_0_1 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_1_1_0 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_2_0_1 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
+ (I) •
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_2_1_0 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
+ (I) •
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_3_0_0 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
+ (-1 : ) • basisVector pauliMatrixContrPauliMatrixMap
(fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_3_1_1 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
+ (-1 : ) •
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
/-! TODO: Work out why `pauliMatrix_lower_basis_expand_prod'` is needed. -/
/-- This lemma is exactly the same as `pauliMatrix_lower_basis_expand_prod'`.
It is needed here for `pauliMatrix_contract_pauliMatrix_aux`. It is unclear why
`pauliMatrix_lower_basis_expand_prod` does not work. -/
private lemma pauliMatrix_lower_basis_expand_prod' {n : } {c : Fin n → complexLorentzTensor.C}
(t : TensorTree complexLorentzTensor c) :
(prod {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ t).tensor =
((((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 0 | 1 => 0 | 2 => 0)).prod t).add
(((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 0 | 1 => 1 | 2 => 1)).prod t).add
((TensorTree.smul (-1) ((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 1 | 1 => 0 | 2 => 1)).prod t)).add
((TensorTree.smul (-1) ((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 1 | 1 => 1 | 2 => 0)).prod t)).add
((TensorTree.smul I ((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 2 | 1 => 0 | 2 => 1)).prod t)).add
((TensorTree.smul (-I) ((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 2 | 1 => 1 | 2 => 0)).prod t)).add
((TensorTree.smul (-1) ((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 3 | 1 => 0 | 2 => 0)).prod t)).add
((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 3 | 1 => 1 | 2 => 1)).prod
t))))))))).tensor := by
exact pauliMatrix_lower_basis_expand_prod _
lemma pauliMatrix_contract_pauliMatrix_aux :
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor
= ((tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)).add
((tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) +
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1)).add
((TensorTree.smul (-1) (tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) +
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0))).add
((TensorTree.smul (-1) (tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) +
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add
((TensorTree.smul I (tensorNode
((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) +
I •
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0))).add
((TensorTree.smul (-I) (tensorNode
((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) +
I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add
((TensorTree.smul (-1) (tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
(-1 : ) •
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1))).add
(tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) +
(-1 : ) • basisVector pauliMatrixContrPauliMatrixMap
fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1))))))))).tensor := by
rw [contr_tensor_eq <| pauliMatrix_lower_basis_expand_prod' _]
/- Moving contraction through addition. -/
rw [contr_add]
rw [add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
/- Moving contraction through smul. -/
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
/- Replacing the contractions. -/
rw [add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_0_0_0]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <|
pauliMatrix_contr_lower_0_1_1]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_0_1]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_1_0]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <|
pauliMatrix_contr_lower_2_0_1]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor
<| pauliMatrix_contr_lower_2_1_0]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_3_0_0]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| eq_tensorNode_of_eq_tensor <|
pauliMatrix_contr_lower_3_1_1]
lemma pauliMatrix_contract_pauliMatrix_expand :
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor =
2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)
+ 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) := by
rw [pauliMatrix_contract_pauliMatrix_aux]
simp only [Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, neg_smul,
one_smul, add_tensor, tensorNode_tensor, smul_tensor, smul_add, smul_neg, _root_.smul_smul,
neg_mul, _root_.neg_neg]
ring_nf
rw [Complex.I_sq]
simp only [neg_smul, one_smul, _root_.neg_neg]
abel
/-- The statement that `η_{μν} σ^{μ α dot β} σ^{ν α' dot β'} = 2 ε^{αα'} ε^{dot β dot β'}`. -/
theorem pauliMatrix_contract_pauliMatrix :
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
PauliMatrix.asConsTensor | ν α' β' =
2 •ₜ Fermion.leftMetric | α α' ⊗ Fermion.rightMetric | β β'}ᵀ := by
rw [pauliMatrix_contract_pauliMatrix_expand]
rw [perm_tensor_eq <| smul_tensor_eq <| leftMetric_mul_rightMetric_tree]
rw [perm_smul]
/- Moving perm through adds. -/
rw [smul_tensor_eq <| perm_add _ _ _]
rw [smul_tensor_eq <| add_tensor_eq_snd <| perm_add _ _ _]
rw [smul_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| perm_add _ _ _]
/- Moving perm through smul. -/
rw [smul_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_fst <| perm_smul _ _ _]
rw [smul_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| perm_smul _ _ _]
/- Perm acting on basis. -/
erw [smul_tensor_eq <| add_tensor_eq_fst <| perm_basisVector_tree _ _]
erw [smul_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
perm_basisVector_tree _ _]
erw [smul_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
smul_tensor_eq <| perm_basisVector_tree _ _]
erw [smul_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
perm_basisVector_tree _ _]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
have h1 (b0011 b1100 b0110 b1001 : CoeSort.coe (complexLorentzTensor.F.obj
(OverColor.mk pauliMatrixContrPauliMatrixMap))) :
((2 • b0011 + 2 • b1100) - 2 • b0110 - 2 • b1001) = (2 : ) • ((b0011) +
(((-1 : )• b0110) + (((-1 : ) •b1001) + b1100))) := by
trans (2 : ) • b0011 + (2 : ) • b1100 - ((2 : ) • b0110) - ((2 : ) • b1001)
· repeat rw [two_smul]
· simp only [neg_smul, one_smul, smul_add, smul_neg]
abel
rw [h1]
congr
· funext i
fin_cases i <;> rfl
· funext i
fin_cases i <;> rfl
· funext i
fin_cases i <;> rfl
· funext i
fin_cases i <;> rfl
end Fermion

View file

@ -0,0 +1,257 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.ComplexLorentz.BasisTrees
/-!
## Lowering indices of Pauli matrices.
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open IndexNotation
open CategoryTheory
open TensorTree
open OverColor.Discrete
noncomputable section
namespace Fermion
open complexLorentzTensor
/-- The map to color one gets when lowering the indices of pauli matrices. -/
def pauliMatrixLowerMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘
⇑finSumFinEquiv.symm) ∘ Fin.succAbove 0 ∘ Fin.succAbove 1)
lemma pauliMatrix_contr_down_0 :
(contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor
= basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
+ basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [one_smul, zero_smul, smul_zero, add_zero]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_0_tree :
(contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor
= (TensorTree.add (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)))
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)))).tensor := by
exact pauliMatrix_contr_down_0
lemma pauliMatrix_contr_down_1 :
{(basisVector ![Color.down, Color.down] fun x => 1) | μ ν
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
= basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
+ basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_1_tree :
{(basisVector ![Color.down, Color.down] fun x => 1) | μ ν
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
= (TensorTree.add (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))).tensor := by
exact pauliMatrix_contr_down_1
lemma pauliMatrix_contr_down_2 :
{(basisVector ![Color.down, Color.down] fun x => 2) | μ ν
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
= (- I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
+ (I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_2_tree :
{(basisVector ![Color.down, Color.down] fun x => 2) | μ ν
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor =
(TensorTree.add
(smul (- I) (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1))))
(smul I (tensorNode (basisVector
pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0))))).tensor := by
exact pauliMatrix_contr_down_2
lemma pauliMatrix_contr_down_3 :
{(basisVector ![Color.down, Color.down] fun x => 3) | μ ν
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
= basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
+ (- 1 : ) • basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_3_tree : {(basisVector ![Color.down, Color.down] fun x => 3) | μ ν
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor =
(TensorTree.add
((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0))))
(smul (-1) (tensorNode (basisVector pauliMatrixLowerMap
(fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by
exact pauliMatrix_contr_down_3
lemma pauliMatrix_lower : {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
= basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
+ basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)
- basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
- basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)
+ I • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
- I • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)
- basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
+ basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
rw [contr_tensor_eq <| prod_tensor_eq_fst <| coMetric_basis_expand_tree]
/- Moving the prod through additions. -/
rw [contr_tensor_eq <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
/- Moving the prod through smuls. -/
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| smul_prod _ _ _]
/- Moving contraction through addition. -/
rw [contr_add]
rw [add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
/- Moving contraction through smul. -/
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_smul _ _]
/- Replacing the contractions. -/
rw [add_tensor_eq_fst <| pauliMatrix_contr_down_0_tree]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| pauliMatrix_contr_down_1_tree]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
pauliMatrix_contr_down_2_tree]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq <|
pauliMatrix_contr_down_3_tree]
/- Simplifying -/
simp only [add_tensor, smul_tensor, tensorNode_tensor, smul_add,_root_.smul_smul]
simp only [Nat.reduceAdd, Fin.isValue, neg_smul, one_smul, mul_neg, neg_mul, one_mul,
_root_.neg_neg, mul_one]
rfl
lemma pauliMatrix_lower_tree : {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
= (TensorTree.add (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0))) <|
TensorTree.add (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1))) <|
TensorTree.add (TensorTree.smul (-1) (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))) <|
TensorTree.add (TensorTree.smul (-1) (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))) <|
TensorTree.add (TensorTree.smul I (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <|
TensorTree.add (TensorTree.smul (-I) (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <|
TensorTree.add (TensorTree.smul (-1) (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)))) <|
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1)))).tensor := by
rw [pauliMatrix_lower]
simp only [Nat.reduceAdd, Fin.isValue, add_tensor,
tensorNode_tensor, smul_tensor, neg_smul, one_smul]
rfl
lemma pauliMatrix_lower_basis_expand_prod {n : } {c : Fin n → complexLorentzTensor.C}
(t : TensorTree complexLorentzTensor c) :
(prod {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ t).tensor =
(((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 0 | 1 => 0 | 2 => 0)).prod t).add
(((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 0 | 1 => 1 | 2 => 1)).prod t).add
((TensorTree.smul (-1) ((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 1 | 1 => 0 | 2 => 1)).prod t)).add
((TensorTree.smul (-1) ((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 1 | 1 => 1 | 2 => 0)).prod t)).add
((TensorTree.smul I ((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 2 | 1 => 0 | 2 => 1)).prod t)).add
((TensorTree.smul (-I) ((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 2 | 1 => 1 | 2 => 0)).prod t)).add
((TensorTree.smul (-1) ((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 3 | 1 => 0 | 2 => 0)).prod t)).add
((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 3 | 1 => 1 | 2 => 1)).prod
t)))))))).tensor := by
rw [prod_tensor_eq_fst <| pauliMatrix_lower_tree]
/- Moving the prod through additions. -/
rw [add_prod _ _ _]
rw [add_tensor_eq_snd <| add_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
/- Moving the prod through smuls. -/
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
smul_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_fst <| smul_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
smul_prod _ _ _]
end Fermion

View file

@ -280,9 +280,12 @@ lemma μ_tmul_tprod_mk {X Y : Type} {cX : X → C} {cY : Y → C}
let q' : (i : (OverColor.mk cY).left) → (F.obj <| Discrete.mk ((OverColor.mk cY).hom i)) := q
let p' : (i : (OverColor.mk cX).left) → (F.obj <| Discrete.mk ((OverColor.mk cX).hom i)) := p
have h1 := μModEquiv_tmul_tprod F p' q'
simp at h1
simp only [Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
objObj'_V_carrier, mk_hom, Functor.id_obj, instMonoidalCategoryStruct_tensorObj_hom] at h1
erw [h1]
simp [p', q']
simp only [objObj'_V_carrier, instMonoidalCategoryStruct_tensorObj_left,
instMonoidalCategoryStruct_tensorObj_hom, mk_hom, p', q']
apply congrArg
funext i
match i with

View file

@ -250,7 +250,7 @@ def termNodeSyntax (T : Term) : TermElabM Term := do
return f T
| _ =>
match type with
| Expr.app _ (Expr.app _ (Expr.app _ c)) =>
| Expr.app _ (Expr.app _ (Expr.app _ _)) =>
return Syntax.mkApp (mkIdent ``TensorTree.tensorNode) #[T]
| _ => return Syntax.mkApp (mkIdent ``TensorTree.vecNode) #[T]

View file

@ -125,7 +125,7 @@ These identities are related to the fact that all the maps are linear.
lemma smul_smul (t : TensorTree S c) (a b : S.k) :
(smul a (smul b t)).tensor = (smul (a * b) t).tensor := by
simp [smul_tensor]
simp only [smul_tensor]
exact _root_.smul_smul a b t.tensor
lemma smul_one (t : TensorTree S c) :
@ -150,11 +150,21 @@ lemma add_assoc (t1 t2 t3 : TensorTree S c) :
/-- When the same permutation acts on both arguments of an addition, the permutation
can be moved out of the addition. -/
lemma add_perm {n : } {c : Fin n → S.C} {c1 : Fin n → S.C}
lemma add_perm {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t t1 : TensorTree S c) :
(add (perm σ t) (perm σ t1)).tensor = (perm σ (add t t1)).tensor := by
simp only [add_tensor, perm_tensor, map_add]
lemma perm_add {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t t1 : TensorTree S c) :
(perm σ (add t t1)).tensor = (add (perm σ t) (perm σ t1)).tensor := by
simp only [add_tensor, perm_tensor, map_add]
lemma perm_smul {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (a : S.k) (t : TensorTree S c) :
(perm σ (smul a t)).tensor = (smul a (perm σ t)).tensor := by
simp only [smul_tensor, perm_tensor, map_smul]
/-- When the same evaluation acts on both arguments of an addition, the evaluation
can be moved out of the addition. -/
lemma add_eval {n : } {c : Fin n.succ → S.C} (i : Fin n.succ) (e : ) (t t1 : TensorTree S c) :