feat: More fixes
This commit is contained in:
parent
4df8663cbc
commit
c9c9047a0c
31 changed files with 134 additions and 124 deletions
|
@ -110,7 +110,7 @@ lemma δ!₃_δ₁0 : @δ!₃ n = δ₁ 0 := rfl
|
|||
|
||||
lemma δ!₄_δ₂Last: @δ!₄ n = δ₂ (Fin.last n) := by
|
||||
rw [Fin.ext_iff]
|
||||
simp only [succ_eq_add_one, δ!₄, Fin.isValue, Fin.coe_cast, Fin.coe_natAdd, Fin.coe_fin_one,
|
||||
simp only [succ_eq_add_one, δ!₄, Fin.isValue, Fin.coe_cast, Fin.coe_natAdd, Fin.val_eq_zero,
|
||||
add_zero, δ₂, Fin.natAdd_last, Fin.val_last]
|
||||
omega
|
||||
|
||||
|
@ -169,7 +169,7 @@ lemma basis_on_δ₁_other {k j : Fin n.succ} (h : k ≠ j) :
|
|||
· rename_i h1 h2
|
||||
simp_all
|
||||
rw [Fin.ext_iff] at h2
|
||||
simp only [Fin.coe_cast, Fin.coe_castAdd, Fin.coe_natAdd] at h2
|
||||
simp only [Fin.coe_cast, Fin.coe_castAdd, Fin.coe_addNat] at h2
|
||||
omega
|
||||
· rfl
|
||||
|
||||
|
@ -197,7 +197,7 @@ lemma basis!_on_δ!₁_other {k j : Fin n} (h : k ≠ j) :
|
|||
· rename_i h1 h2
|
||||
simp_all
|
||||
rw [Fin.ext_iff] at h2
|
||||
simp only [Fin.coe_cast, Fin.coe_natAdd, Fin.coe_castAdd, add_right_inj] at h2
|
||||
simp only [Fin.coe_cast, Fin.coe_natAdd, Fin.coe_castAdd, Fin.coe_addNat, add_right_inj] at h2
|
||||
omega
|
||||
· rfl
|
||||
|
||||
|
@ -254,11 +254,11 @@ lemma basis!_on_δ!₃ (j : Fin n) : basis!AsCharges j δ!₃ = 0 := by
|
|||
simp only [basis!AsCharges, succ_eq_add_one, PureU1_numberCharges]
|
||||
split<;> rename_i h
|
||||
· simp only [δ!₃, succ_eq_add_one, Fin.isValue, δ!₁, Fin.ext_iff, Fin.coe_cast, Fin.coe_castAdd,
|
||||
Fin.coe_fin_one, Fin.coe_natAdd] at h
|
||||
Fin.val_eq_zero, Fin.coe_natAdd] at h
|
||||
omega
|
||||
· split <;> rename_i h2
|
||||
· simp only [δ!₃, succ_eq_add_one, Fin.isValue, δ!₂, Fin.ext_iff, Fin.coe_cast,
|
||||
Fin.coe_castAdd, Fin.coe_fin_one, Fin.coe_natAdd] at h2
|
||||
Fin.coe_castAdd, Fin.val_eq_zero, Fin.coe_natAdd] at h2
|
||||
omega
|
||||
· rfl
|
||||
|
||||
|
@ -266,12 +266,12 @@ lemma basis!_on_δ!₄ (j : Fin n) : basis!AsCharges j δ!₄ = 0 := by
|
|||
simp only [basis!AsCharges, succ_eq_add_one, PureU1_numberCharges]
|
||||
split <;> rename_i h
|
||||
· rw [Fin.ext_iff] at h
|
||||
simp only [succ_eq_add_one, δ!₄, Fin.isValue, Fin.coe_cast, Fin.coe_natAdd, Fin.coe_fin_one,
|
||||
simp only [succ_eq_add_one, δ!₄, Fin.isValue, Fin.coe_cast, Fin.coe_natAdd, Fin.val_eq_zero,
|
||||
add_zero, δ!₁, Fin.coe_castAdd, add_right_inj] at h
|
||||
omega
|
||||
· split <;> rename_i h2
|
||||
· rw [Fin.ext_iff] at h2
|
||||
simp only [succ_eq_add_one, δ!₄, Fin.isValue, Fin.coe_cast, Fin.coe_natAdd, Fin.coe_fin_one,
|
||||
simp only [succ_eq_add_one, δ!₄, Fin.isValue, Fin.coe_cast, Fin.coe_natAdd, Fin.val_eq_zero,
|
||||
add_zero, δ!₂, Fin.coe_castAdd, add_right_inj] at h2
|
||||
omega
|
||||
· rfl
|
||||
|
@ -650,7 +650,7 @@ lemma Pa_eq (g g' : Fin n.succ → ℚ) (f f' : Fin n → ℚ) :
|
|||
exact Pa'_eq _ _
|
||||
|
||||
lemma basisa_card : Fintype.card ((Fin n.succ) ⊕ (Fin n)) =
|
||||
FiniteDimensional.finrank ℚ (PureU1 (2 * n.succ)).LinSols := by
|
||||
Module.finrank ℚ (PureU1 (2 * n.succ)).LinSols := by
|
||||
erw [BasisLinear.finrank_AnomalyFreeLinear]
|
||||
simp only [Fintype.card_sum, Fintype.card_fin, mul_eq]
|
||||
exact split_odd n
|
||||
|
|
|
@ -149,7 +149,7 @@ lemma lineInCubicPerm_last_perm {S : (PureU1 (2 * n.succ.succ)).LinSols}
|
|||
· simp [Fin.ext_iff, δ!₂, δ!₁]
|
||||
· simp [Fin.ext_iff, δ!₂, δ!₄]
|
||||
· simp only [Nat.succ_eq_add_one, δ!₁, δ!₄, Fin.isValue, ne_eq, Fin.ext_iff, Fin.coe_cast,
|
||||
Fin.coe_natAdd, Fin.coe_castAdd, Fin.val_last, Fin.coe_fin_one, add_zero, add_right_inj]
|
||||
Fin.coe_natAdd, Fin.coe_castAdd, Fin.val_last, Fin.val_eq_zero, add_zero, add_right_inj]
|
||||
omega
|
||||
· exact fun M => lineInCubicPerm_last_cond (lineInCubicPerm_permute LIC M)
|
||||
|
||||
|
|
|
@ -150,15 +150,15 @@ lemma special_case_lineInCubic {S : (PureU1 (2 * n.succ)).Sols}
|
|||
|
||||
lemma special_case_lineInCubic_perm {S : (PureU1 (2 * n.succ)).Sols}
|
||||
(h : ∀ (M : (FamilyPermutations (2 * n.succ)).group),
|
||||
SpecialCase ((FamilyPermutations (2 * n.succ)).solAction.toFun S M)) :
|
||||
SpecialCase ((FamilyPermutations (2 * n.succ)).solAction.toFun _ _ S M)) :
|
||||
LineInCubicPerm S.1.1 :=
|
||||
fun M => special_case_lineInCubic (h M)
|
||||
|
||||
theorem special_case {S : (PureU1 (2 * n.succ.succ)).Sols}
|
||||
(h : ∀ (M : (FamilyPermutations (2 * n.succ.succ)).group),
|
||||
SpecialCase ((FamilyPermutations (2 * n.succ.succ)).solAction.toFun S M)) :
|
||||
SpecialCase ((FamilyPermutations (2 * n.succ.succ)).solAction.toFun _ _ S M)) :
|
||||
∃ (M : (FamilyPermutations (2 * n.succ.succ)).group),
|
||||
((FamilyPermutations (2 * n.succ.succ)).solAction.toFun S M).1.1
|
||||
((FamilyPermutations (2 * n.succ.succ)).solAction.toFun _ _ S M).1.1
|
||||
∈ Submodule.span ℚ (Set.range basis) :=
|
||||
lineInCubicPerm_in_plane S (special_case_lineInCubic_perm h)
|
||||
|
||||
|
|
|
@ -166,7 +166,7 @@ lemma linesInPlane_eq_sq_four {S : (PureU1 4).Sols}
|
|||
ConstAbsProp (S.val i, S.val j) := by
|
||||
refine Prop_two ConstAbsProp Fin.zero_ne_one ?_
|
||||
intro M
|
||||
let S' := (FamilyPermutations 4).solAction.toFun S M
|
||||
let S' := (FamilyPermutations 4).solAction.toFun _ _ S M
|
||||
have hS' : LineInPlaneCond S'.1.1 :=
|
||||
(lineInPlaneCond_perm hS M)
|
||||
exact linesInPlane_four S' hS'
|
||||
|
|
|
@ -90,7 +90,7 @@ lemma δa₂_δ!₁ (j : Fin n) : δa₂ j = δ!₁ j.castSucc := by
|
|||
lemma δa₃_δ₃ : @δa₃ n = δ₃ := by
|
||||
rw [Fin.ext_iff]
|
||||
simp only [succ_eq_add_one, δa₃, Fin.isValue, Fin.coe_cast, Fin.coe_castAdd, Fin.coe_natAdd,
|
||||
Fin.coe_fin_one, add_zero, δ₃]
|
||||
Fin.val_eq_zero, add_zero, δ₃]
|
||||
exact Nat.add_comm 1 n
|
||||
|
||||
lemma δa₃_δ!₁ : δa₃ = δ!₁ (Fin.last n) := by
|
||||
|
@ -265,12 +265,12 @@ lemma basis_on_δ₃ (j : Fin n) : basisAsCharges j δ₃ = 0 := by
|
|||
simp only [basisAsCharges, PureU1_numberCharges]
|
||||
split <;> rename_i h
|
||||
· rw [Fin.ext_iff] at h
|
||||
simp only [δ₃, Fin.isValue, Fin.coe_cast, Fin.coe_castAdd, Fin.coe_natAdd, Fin.coe_fin_one,
|
||||
simp only [δ₃, Fin.isValue, Fin.coe_cast, Fin.coe_castAdd, Fin.coe_natAdd, Fin.val_eq_zero,
|
||||
add_zero, δ₁] at h
|
||||
omega
|
||||
· split <;> rename_i h2
|
||||
· rw [Fin.ext_iff] at h2
|
||||
simp only [δ₃, Fin.isValue, Fin.coe_cast, Fin.coe_castAdd, Fin.coe_natAdd, Fin.coe_fin_one,
|
||||
simp only [δ₃, Fin.isValue, Fin.coe_cast, Fin.coe_castAdd, Fin.coe_natAdd, Fin.val_eq_zero,
|
||||
add_zero, δ₂] at h2
|
||||
omega
|
||||
· rfl
|
||||
|
@ -279,12 +279,12 @@ lemma basis!_on_δ!₃ (j : Fin n) : basis!AsCharges j δ!₃ = 0 := by
|
|||
simp only [basis!AsCharges, PureU1_numberCharges]
|
||||
split <;> rename_i h
|
||||
· rw [Fin.ext_iff] at h
|
||||
simp only [δ!₃, Fin.isValue, Fin.coe_cast, Fin.coe_castAdd, Fin.coe_fin_one, δ!₁,
|
||||
simp only [δ!₃, Fin.isValue, Fin.coe_cast, Fin.coe_castAdd, Fin.val_eq_zero, δ!₁,
|
||||
Fin.coe_natAdd] at h
|
||||
omega
|
||||
· split <;> rename_i h2
|
||||
· rw [Fin.ext_iff] at h2
|
||||
simp only [δ!₃, Fin.isValue, Fin.coe_cast, Fin.coe_castAdd, Fin.coe_fin_one, δ!₂,
|
||||
simp only [δ!₃, Fin.isValue, Fin.coe_cast, Fin.coe_castAdd, Fin.val_eq_zero, δ!₂,
|
||||
Fin.coe_natAdd] at h2
|
||||
omega
|
||||
· rfl
|
||||
|
@ -643,7 +643,7 @@ lemma Pa_eq (g g' : Fin n.succ → ℚ) (f f' : Fin n.succ → ℚ) :
|
|||
exact Pa'_eq _ _
|
||||
|
||||
lemma basisa_card : Fintype.card ((Fin n.succ) ⊕ (Fin n.succ)) =
|
||||
FiniteDimensional.finrank ℚ (PureU1 (2 * n.succ + 1)).LinSols := by
|
||||
Module.finrank ℚ (PureU1 (2 * n.succ + 1)).LinSols := by
|
||||
erw [BasisLinear.finrank_AnomalyFreeLinear]
|
||||
simp only [Fintype.card_sum, Fintype.card_fin]
|
||||
exact Eq.symm (Nat.two_mul n.succ)
|
||||
|
|
|
@ -149,7 +149,7 @@ lemma special_case_lineInCubic {S : (PureU1 (2 * n.succ + 1)).Sols}
|
|||
|
||||
lemma special_case_lineInCubic_perm {S : (PureU1 (2 * n.succ + 1)).Sols}
|
||||
(h : ∀ (M : (FamilyPermutations (2 * n.succ + 1)).group),
|
||||
SpecialCase ((FamilyPermutations (2 * n.succ + 1)).solAction.toFun S M)) :
|
||||
SpecialCase ((FamilyPermutations (2 * n.succ + 1)).solAction.toFun _ _ S M)) :
|
||||
LineInCubicPerm S.1.1 := by
|
||||
intro M
|
||||
have hM := special_case_lineInCubic (h M)
|
||||
|
@ -157,9 +157,11 @@ lemma special_case_lineInCubic_perm {S : (PureU1 (2 * n.succ + 1)).Sols}
|
|||
|
||||
theorem special_case {S : (PureU1 (2 * n.succ.succ + 1)).Sols}
|
||||
(h : ∀ (M : (FamilyPermutations (2 * n.succ.succ + 1)).group),
|
||||
SpecialCase ((FamilyPermutations (2 * n.succ.succ + 1)).solAction.toFun S M)) :
|
||||
SpecialCase ((FamilyPermutations (2 * n.succ.succ + 1)).solAction.toFun _ _ S M)) :
|
||||
S.1.1 = 0 := by
|
||||
have ht := special_case_lineInCubic_perm h
|
||||
exact lineInCubicPerm_zero ht
|
||||
|
||||
|
||||
end Odd
|
||||
end PureU1
|
||||
|
|
|
@ -38,8 +38,6 @@ def chargeMap {n : ℕ} (f : PermGroup n) :
|
|||
map_add' _ _ := rfl
|
||||
map_smul' _ _:= rfl
|
||||
|
||||
open PureU1Charges in
|
||||
|
||||
/-- The representation of `permGroup` acting on the vector space of charges. -/
|
||||
@[simp]
|
||||
def permCharges {n : ℕ} : Representation ℚ (PermGroup n) (PureU1 n).Charges where
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue