feat: More fixes

This commit is contained in:
jstoobysmith 2024-11-02 08:50:17 +00:00
parent 4df8663cbc
commit c9c9047a0c
31 changed files with 134 additions and 124 deletions

View file

@ -37,16 +37,16 @@ def BL₁ : (PlusU1 1).Sols where
intro i
simp only [PlusU1_numberLinear] at i
match i with
| 0 => rfl
| 1 => rfl
| 2 => rfl
| 3 => rfl
| 0 => with_unfolding_all rfl
| 1 => with_unfolding_all rfl
| 2 => with_unfolding_all rfl
| 3 => with_unfolding_all rfl
quadSol := by
intro i
simp only [PlusU1_numberQuadratic] at i
match i with
| 0 => rfl
cubicSol := by rfl
| 0 => with_unfolding_all rfl
cubicSol := by with_unfolding_all rfl
/-- $B - L$ in the $n$-family case. -/
@[simps!]
@ -67,7 +67,7 @@ lemma on_quadBiLin (S : (PlusU1 n).Charges) :
lemma on_quadBiLin_AFL (S : (PlusU1 n).LinSols) : quadBiLin (BL n).val S.val = 0 := by
rw [on_quadBiLin, YYsol S, SU2Sol S, SU3Sol S]
rfl
with_unfolding_all rfl
lemma add_AFL_quad (S : (PlusU1 n).LinSols) (a b : ) :
accQuad (a • S.val + b • (BL n).val) = a ^ 2 * accQuad S.val := by
@ -100,7 +100,7 @@ lemma on_cubeTriLin (S : (PlusU1 n).Charges) :
lemma on_cubeTriLin_AFL (S : (PlusU1 n).LinSols) :
cubeTriLin (BL n).val (BL n).val S.val = 0 := by
rw [on_cubeTriLin, gravSol S, SU3Sol S]
rfl
with_unfolding_all rfl
lemma add_AFL_cube (S : (PlusU1 n).LinSols) (a b : ) :
accCube (a • S.val + b • (BL n).val) =

View file

@ -57,8 +57,8 @@ theorem plane_exists_dim_le_7 {n : } (hn : ExistsPlane n) : n ≤ 7 := by
obtain ⟨B, hB⟩ := exists_plane_exists_basis hn
have h1 := LinearIndependent.fintype_card_le_finrank hB
simp only [Fintype.card_sum, Fintype.card_fin] at h1
rw [show FiniteDimensional.finrank (PlusU1 3).Charges = 18 from
FiniteDimensional.finrank_fin_fun ] at h1
rw [show Module.finrank (PlusU1 3).Charges = 18 from
Module.finrank_fin_fun ] at h1
exact Nat.le_of_add_le_add_left h1
end PlusU1

View file

@ -35,16 +35,16 @@ def Y₁ : (PlusU1 1).Sols where
intro i
simp only [PlusU1_numberLinear] at i
match i with
| 0 => rfl
| 1 => rfl
| 2 => rfl
| 3 => rfl
| 0 => with_unfolding_all rfl
| 1 => with_unfolding_all rfl
| 2 => with_unfolding_all rfl
| 3 => with_unfolding_all rfl
quadSol := by
intro i
simp only [PlusU1_numberQuadratic] at i
match i with
| 0 => rfl
cubicSol := by rfl
| 0 => with_unfolding_all rfl
cubicSol := by with_unfolding_all rfl
/-- The hypercharge for `n` family. -/
@[simps!]
@ -96,7 +96,7 @@ lemma on_cubeTriLin (S : (PlusU1 n).Charges) :
lemma on_cubeTriLin_AFL (S : (PlusU1 n).LinSols) :
cubeTriLin (Y n).val (Y n).val S.val = 0 := by
rw [on_cubeTriLin, YYsol S]
rfl
with_unfolding_all rfl
lemma on_cubeTriLin' (S : (PlusU1 n).Charges) :
cubeTriLin (Y n).val S S = 6 * accQuad S := by
@ -109,7 +109,7 @@ lemma on_cubeTriLin' (S : (PlusU1 n).Charges) :
lemma on_cubeTriLin'_ALQ (S : (PlusU1 n).QuadSols) :
cubeTriLin (Y n).val S.val S.val = 0 := by
rw [on_cubeTriLin', quadSol S]
rfl
with_unfolding_all rfl
lemma add_AFL_cube (S : (PlusU1 n).LinSols) (a b : ) :
accCube (a • S.val + b • (Y n).val) =