refactor: Lint
This commit is contained in:
parent
cb2f8a30bf
commit
cecc75cf46
17 changed files with 36 additions and 43 deletions
|
@ -226,7 +226,7 @@ lemma ι_normalOrderF_eq_of_equiv (a b : 𝓕.FieldOpFreeAlgebra) (h : a ≈ b)
|
|||
defined as the decent of `ι ∘ₗ normalOrderF` from `FieldOpFreeAlgebra 𝓕` to `FieldOpAlgebra 𝓕`.
|
||||
This decent exists because `ι ∘ₗ normalOrderF` is well-defined on equivalence classes.
|
||||
|
||||
The notation `𝓝(a)` is used for `normalOrder a`. -/
|
||||
The notation `𝓝(a)` is used for `normalOrder a`. -/
|
||||
noncomputable def normalOrder : FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕 where
|
||||
toFun := Quotient.lift (ι.toLinearMap ∘ₗ normalOrderF) ι_normalOrderF_eq_of_equiv
|
||||
map_add' x y := by
|
||||
|
|
|
@ -118,7 +118,6 @@ lemma crPart_mul_normalOrder (φ : 𝓕.FieldOp) (a : 𝓕.FieldOpAlgebra) :
|
|||
|
||||
-/
|
||||
|
||||
|
||||
/-- For a field specfication `𝓕`, and `a` and `b` in `𝓕.FieldOpAlgebra` the normal ordering
|
||||
of the super commutator of `a` and `b` vanishes. I.e. `𝓝([a,b]ₛ) = 0`. -/
|
||||
@[simp]
|
||||
|
@ -351,7 +350,7 @@ the following relation holds in the algebra `𝓕.FieldOpAlgebra`,
|
|||
|
||||
The proof of ultimetly goes as follows:
|
||||
- `ofFieldOp_eq_crPart_add_anPart` is used to split `φ` into its creation and annihilation parts.
|
||||
- The fact that `crPart φ * 𝓝(φ₀φ₁…φₙ) = 𝓝(crPart φ * φ₀φ₁…φₙ)` is used.
|
||||
- The fact that `crPart φ * 𝓝(φ₀φ₁…φₙ) = 𝓝(crPart φ * φ₀φ₁…φₙ)` is used.
|
||||
- The fact that `anPart φ * 𝓝(φ₀φ₁…φₙ)` is
|
||||
`𝓢(φ, φ₀φ₁…φₙ) 𝓝(φ₀φ₁…φₙ) * anPart φ + [anPart φ, 𝓝(φ₀φ₁…φₙ)]` is used
|
||||
- The fact that `𝓢(φ, φ₀φ₁…φₙ) 𝓝(φ₀φ₁…φₙ) * anPart φ = 𝓝(anPart φ * φ₀φ₁…φₙ)`
|
||||
|
|
|
@ -26,7 +26,7 @@ variable {𝓕 : FieldSpecification}
|
|||
-/
|
||||
|
||||
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, and a `i ≤ φs.length` the following relation holds
|
||||
`𝓕.FieldOp`, and a `i ≤ φs.length` the following relation holds
|
||||
|
||||
`𝓝([φsΛ ↩Λ φ i none]ᵘᶜ) = s • 𝓝(φ :: [φsΛ]ᵘᶜ)`
|
||||
|
||||
|
@ -100,7 +100,7 @@ lemma normalOrder_uncontracted_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp
|
|||
|
||||
/--
|
||||
For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted`, then
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted`, then
|
||||
`𝓝([φsΛ ↩Λ φ i (some k)]ᵘᶜ)` is equal to the normal ordering of `[φsΛ]ᵘᶜ` with the `FieldOp`
|
||||
corresponding to `k` removed.
|
||||
|
||||
|
|
|
@ -31,7 +31,7 @@ noncomputable section
|
|||
def staticWickTerm {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) : 𝓕.FieldOpAlgebra :=
|
||||
φsΛ.sign • φsΛ.staticContract * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ)
|
||||
|
||||
/-- For the empty list `[]` of `𝓕.FieldOp`, the `staticWickTerm` of the empty Wick contraction
|
||||
/-- For the empty list `[]` of `𝓕.FieldOp`, the `staticWickTerm` of the empty Wick contraction
|
||||
`empty` of `[]` (its only Wick contraction) is `1`. -/
|
||||
@[simp]
|
||||
lemma staticWickTerm_empty_nil :
|
||||
|
|
|
@ -33,7 +33,7 @@ The inductive step works as follows:
|
|||
|
||||
For the LHS:
|
||||
1. The proof considers `φ₀…φₙ` as `φ₀(φ₁…φₙ)` and use the induction hypothesis on `φ₁…φₙ`.
|
||||
2. This gives terms of the form `φ * φsΛ.staticWickTerm` on which
|
||||
2. This gives terms of the form `φ * φsΛ.staticWickTerm` on which
|
||||
`mul_staticWickTerm_eq_sum` is used where `φsΛ` is a Wick contraction of `φ₁…φₙ`,
|
||||
to rewrite terms as a sum over optional uncontracted elements of `φsΛ`
|
||||
|
||||
|
|
|
@ -31,11 +31,10 @@ def timeContract (φ ψ : 𝓕.FieldOp) : 𝓕.FieldOpAlgebra :=
|
|||
lemma timeContract_eq_smul (φ ψ : 𝓕.FieldOp) : timeContract φ ψ =
|
||||
𝓣(ofFieldOp φ * ofFieldOp ψ) + (-1 : ℂ) • 𝓝(ofFieldOp φ * ofFieldOp ψ) := by rfl
|
||||
|
||||
|
||||
/-- For a field specification `𝓕`, and `φ` and `ψ` elements of `𝓕.FieldOp`, if
|
||||
`φ` and `ψ` are time-ordered then
|
||||
|
||||
`timeContract φ ψ = [anPart φ, ofFieldOp ψ]ₛ`. -/
|
||||
`timeContract φ ψ = [anPart φ, ofFieldOp ψ]ₛ`. -/
|
||||
lemma timeContract_of_timeOrderRel (φ ψ : 𝓕.FieldOp) (h : timeOrderRel φ ψ) :
|
||||
timeContract φ ψ = [anPart φ, ofFieldOp ψ]ₛ := by
|
||||
conv_rhs =>
|
||||
|
@ -62,7 +61,7 @@ lemma timeContract_of_not_timeOrderRel (φ ψ : 𝓕.FieldOp) (h : ¬ timeOrderR
|
|||
/-- For a field specification `𝓕`, and `φ` and `ψ` elements of `𝓕.FieldOp`, if
|
||||
`φ` and `ψ` are not time-ordered then
|
||||
|
||||
`timeContract φ ψ = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • [anPart ψ, ofFieldOp φ]ₛ`. -/
|
||||
`timeContract φ ψ = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • [anPart ψ, ofFieldOp φ]ₛ`. -/
|
||||
lemma timeContract_of_not_timeOrderRel_expand (φ ψ : 𝓕.FieldOp) (h : ¬ timeOrderRel φ ψ) :
|
||||
timeContract φ ψ = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • [anPart ψ, ofFieldOp φ]ₛ := by
|
||||
rw [timeContract_of_not_timeOrderRel _ _ h]
|
||||
|
|
|
@ -33,7 +33,7 @@ noncomputable section
|
|||
def wickTerm {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) : 𝓕.FieldOpAlgebra :=
|
||||
φsΛ.sign • φsΛ.timeContract * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ)
|
||||
|
||||
/-- For the empty list `[]` of `𝓕.FieldOp`, the `wickTerm` of the empty Wick contraction
|
||||
/-- For the empty list `[]` of `𝓕.FieldOp`, the `wickTerm` of the empty Wick contraction
|
||||
`empty` of `[]` (its only Wick contraction) is `1`. -/
|
||||
@[simp]
|
||||
lemma wickTerm_empty_nil :
|
||||
|
|
|
@ -79,7 +79,7 @@ For the LHS:
|
|||
the maximal time field in `φ₀…φₙ`
|
||||
2. The induction hypothesis is then used on `𝓣(φ₀…φᵢ₋₁φᵢ₊₁φₙ)` to expand it as a sum over
|
||||
Wick contractions of `φ₀…φᵢ₋₁φᵢ₊₁φₙ`.
|
||||
3. This gives terms of the form `φᵢ * φsΛ.timeContract` on which
|
||||
3. This gives terms of the form `φᵢ * φsΛ.timeContract` on which
|
||||
`mul_wickTerm_eq_sum` is used where `φsΛ` is a Wick contraction of `φ₀…φᵢ₋₁φᵢ₊₁φ`,
|
||||
to rewrite terms as a sum over optional uncontracted elements of `φsΛ`
|
||||
|
||||
|
|
|
@ -30,7 +30,7 @@ where the sum is over all Wick contraction `φsΛ` which only have equal time co
|
|||
This result follows from
|
||||
- `static_wick_theorem` to rewrite `𝓣(φs)` on the left hand side as a sum of
|
||||
`𝓣(φsΛ.staticWickTerm)`.
|
||||
- `EqTimeOnly.timeOrder_staticContract_of_not_mem` and `timeOrder_timeOrder_mid` to set to
|
||||
- `EqTimeOnly.timeOrder_staticContract_of_not_mem` and `timeOrder_timeOrder_mid` to set to
|
||||
zero those terms in which the contracted elements do not have equal time.
|
||||
- `staticContract_eq_timeContract_of_eqTimeOnly` to rewrite the static contract as a time contract
|
||||
for those terms which have equal time.
|
||||
|
@ -61,7 +61,6 @@ lemma timeOrder_ofFieldOpList_eqTimeOnly (φs : List 𝓕.FieldOp) :
|
|||
exact x.2
|
||||
exact x.2
|
||||
|
||||
|
||||
lemma timeOrder_ofFieldOpList_eq_eqTimeOnly_empty (φs : List 𝓕.FieldOp) :
|
||||
𝓣(ofFieldOpList φs) = 𝓣(𝓝(ofFieldOpList φs)) +
|
||||
∑ (φsΛ : {φsΛ // φsΛ.EqTimeOnly (φs := φs) ∧ φsΛ ≠ empty}),
|
||||
|
@ -112,7 +111,7 @@ For a list `φs` of `𝓕.FieldOp`, then `𝓣(φs)` is equal to the sum of
|
|||
|
||||
- `∑ φsΛ, φsΛ.wickTerm` where the sum is over all Wick contraction `φsΛ` which have
|
||||
no contractions of equal time.
|
||||
- `∑ φsΛ, sign φs ↑φsΛ • (φsΛ.1).timeContract ∑ φssucΛ, φssucΛ.wickTerm`, where
|
||||
- `∑ φsΛ, sign φs ↑φsΛ • (φsΛ.1).timeContract ∑ φssucΛ, φssucΛ.wickTerm`, where
|
||||
the first sum is over all Wick contraction `φsΛ` which only have equal time contractions
|
||||
and the second sum is over all Wick contraction `φssucΛ` of the uncontracted elements of `φsΛ`
|
||||
which do not have any equal time contractions.
|
||||
|
@ -120,7 +119,7 @@ For a list `φs` of `𝓕.FieldOp`, then `𝓣(φs)` is equal to the sum of
|
|||
The proof of this result relies on `wicks_theorem` to rewrite `𝓣(φs)` as a sum over
|
||||
all Wick contractions.
|
||||
The sum over all Wick contractions is then split additively into two parts using based on having or
|
||||
not having equal time contractions.
|
||||
not having equal time contractions.
|
||||
The sum over Wick contractions which do have equal time contractions is turned into two sums
|
||||
one over the Wick contractions which only have equal time contractions and the other over the
|
||||
uncontracted elements of the Wick contraction which do not have equal time contractions using
|
||||
|
@ -130,10 +129,9 @@ The properties of `join_sign_timeContract` is then used to equate terms.
|
|||
lemma timeOrder_haveEqTime_split (φs : List 𝓕.FieldOp) :
|
||||
𝓣(ofFieldOpList φs) = (∑ (φsΛ : {φsΛ : WickContraction φs.length // ¬ HaveEqTime φsΛ}),
|
||||
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ))
|
||||
+ ∑ (φsΛ : {φsΛ // φsΛ.EqTimeOnly (φs := φs) ∧ φsΛ ≠ empty}),
|
||||
sign φs ↑φsΛ • (φsΛ.1).timeContract *
|
||||
(∑ φssucΛ : { φssucΛ : WickContraction [φsΛ.1]ᵘᶜ.length // ¬ φssucΛ.HaveEqTime },
|
||||
sign [φsΛ.1]ᵘᶜ φssucΛ • (φssucΛ.1).timeContract * normalOrder (ofFieldOpList [φssucΛ.1]ᵘᶜ)) := by
|
||||
+ ∑ (φsΛ : {φsΛ // φsΛ.EqTimeOnly (φs := φs) ∧ φsΛ ≠ empty}), φsΛ.1.sign • φsΛ.1.timeContract *
|
||||
(∑ φssucΛ : { φssucΛ : WickContraction [φsΛ.1]ᵘᶜ.length // ¬ φssucΛ.HaveEqTime },
|
||||
φssucΛ.1.wickTerm) := by
|
||||
rw [wicks_theorem]
|
||||
simp only [wickTerm]
|
||||
let e1 : WickContraction φs.length ≃ {φsΛ // HaveEqTime φsΛ} ⊕ {φsΛ // ¬ HaveEqTime φsΛ} := by
|
||||
|
@ -165,13 +163,12 @@ lemma timeOrder_haveEqTime_split (φs : List 𝓕.FieldOp) :
|
|||
rw [@join_uncontractedListGet]
|
||||
|
||||
lemma normalOrder_timeOrder_ofFieldOpList_eq_not_haveEqTime_sub_inductive (φs : List 𝓕.FieldOp) :
|
||||
𝓣(𝓝(ofFieldOpList φs)) = (∑ (φsΛ : {φsΛ : WickContraction φs.length // ¬ HaveEqTime φsΛ}),
|
||||
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ))
|
||||
𝓣(𝓝(ofFieldOpList φs)) =
|
||||
(∑ (φsΛ : {φsΛ : WickContraction φs.length // ¬ HaveEqTime φsΛ}), φsΛ.1.wickTerm)
|
||||
+ ∑ (φsΛ : {φsΛ // φsΛ.EqTimeOnly (φs := φs) ∧ φsΛ ≠ empty}),
|
||||
sign φs ↑φsΛ • (φsΛ.1).timeContract *
|
||||
(∑ φssucΛ : { φssucΛ : WickContraction [φsΛ.1]ᵘᶜ.length // ¬ φssucΛ.HaveEqTime },
|
||||
sign [φsΛ.1]ᵘᶜ φssucΛ • (φssucΛ.1).timeContract * normalOrder (ofFieldOpList [φssucΛ.1]ᵘᶜ) -
|
||||
𝓣(𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ))) := by
|
||||
φssucΛ.1.wickTerm - 𝓣(𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ))) := by
|
||||
rw [normalOrder_timeOrder_ofFieldOpList_eq_eqTimeOnly_empty,
|
||||
timeOrder_haveEqTime_split]
|
||||
rw [add_sub_assoc]
|
||||
|
@ -224,7 +221,7 @@ lemma wicks_theorem_normal_order_empty : 𝓣(𝓝(ofFieldOpList [])) =
|
|||
where the sum is over all Wick contraction `φsΛ` in which no two contracted elements
|
||||
have the same time.
|
||||
|
||||
The proof of proceeds by induction on `φs`, with the base case `[]` holding by following
|
||||
The proof of proceeds by induction on `φs`, with the base case `[]` holding by following
|
||||
through definitions. and the inductive case holding as a result of
|
||||
- `timeOrder_haveEqTime_split`
|
||||
- `normalOrder_timeOrder_ofFieldOpList_eq_eqTimeOnly_empty`
|
||||
|
@ -236,7 +233,6 @@ theorem wicks_theorem_normal_order : (φs : List 𝓕.FieldOp) →
|
|||
∑ (φsΛ : {φsΛ : WickContraction φs.length // ¬ HaveEqTime φsΛ}), φsΛ.1.wickTerm
|
||||
| [] => wicks_theorem_normal_order_empty
|
||||
| φ :: φs => by
|
||||
simp only [wickTerm]
|
||||
rw [normalOrder_timeOrder_ofFieldOpList_eq_not_haveEqTime_sub_inductive]
|
||||
simp only [Algebra.smul_mul_assoc, ne_eq, add_right_eq_self]
|
||||
apply Finset.sum_eq_zero
|
||||
|
|
|
@ -347,7 +347,7 @@ lemma normalOrderList_eraseIdx_normalOrderEquiv {φs : List 𝓕.CrAnFieldOp} (n
|
|||
the following relation holds
|
||||
`normalOrderSign (φ₀…φᵢ₋₁φᵢ₊₁…φₙ)` is equal to the product of
|
||||
- `normalOrderSign φ₀…φₙ`,
|
||||
- `𝓢(φᵢ, φ₀…φᵢ₋₁)` i.e. the sign needed to remove `φᵢ` from `φ₀…φₙ`,
|
||||
- `𝓢(φᵢ, φ₀…φᵢ₋₁)` i.e. the sign needed to remove `φᵢ` from `φ₀…φₙ`,
|
||||
- `𝓢(φᵢ, _)` where `_` is the list of elements appearing before `φᵢ` after normal ordering. I.e.
|
||||
the sign needed to insert `φᵢ` back into the normal-ordered list at the correct place. -/
|
||||
lemma normalOrderSign_eraseIdx (φs : List 𝓕.CrAnFieldOp) (i : Fin φs.length) :
|
||||
|
|
|
@ -24,7 +24,7 @@ open HepLean.Fin
|
|||
|
||||
-/
|
||||
|
||||
/-- Given a Wick contraction `φsΛ` for a list `φs` of `𝓕.FieldOp`,
|
||||
/-- Given a Wick contraction `φsΛ` for a list `φs` of `𝓕.FieldOp`,
|
||||
a `𝓕.FieldOp` `φ`, an `i ≤ φs.length` and a `j` which is either `none` or
|
||||
some element of `φsΛ.uncontracted`, the new Wick contraction
|
||||
`φsΛ.insertAndContract φ i j` is defined by inserting `φ` into `φs` after
|
||||
|
@ -285,7 +285,7 @@ lemma insert_fin_eq_self (φ : 𝓕.FieldOp) {φs : List 𝓕.FieldOp}
|
|||
rfl
|
||||
|
||||
/-- For a list `φs` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` a sum over
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` a sum over
|
||||
Wick contractions of `φs` with `φ` inserted at `i` is equal to the sum over Wick contractions
|
||||
`φsΛ` of just `φs` and the sum over optional uncontracted elements of the `φsΛ`.
|
||||
|
||||
|
|
|
@ -255,7 +255,7 @@ lemma sign_insert_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
|||
exact hG
|
||||
|
||||
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a graded compliant Wick contraction `φsΛ` of `φs`,
|
||||
and a `φ` in `𝓕.FieldOp`, the following relation holds
|
||||
and a `φ` in `𝓕.FieldOp`, the following relation holds
|
||||
`(φsΛ ↩Λ φ 0 none).sign = φsΛ.sign`.
|
||||
|
||||
This is a direct corollary of `sign_insert_none`. -/
|
||||
|
|
|
@ -856,7 +856,7 @@ lemma signInsertSome_mul_filter_contracted_of_not_lt (φ : 𝓕.FieldOp) (φs :
|
|||
|
||||
/--
|
||||
For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted` such that `k<i`,
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted` such that `k<i`,
|
||||
the sign of `φsΛ ↩Λ φ i (some k)` is equal to the product of
|
||||
- the sign associated with moving `φ` through the `φsΛ`-uncontracted `FieldOp` in `φ₀…φₖ`,
|
||||
- the sign associated with moving `φ` through all `FieldOp` in `φ₀…φᵢ₋₁`,
|
||||
|
@ -881,7 +881,7 @@ lemma sign_insert_some_of_lt (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
|||
|
||||
/--
|
||||
For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted` such that `i ≤ k`,
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted` such that `i ≤ k`,
|
||||
the sign of `φsΛ ↩Λ φ i (some k)` is equal to the product of
|
||||
- the sign associated with moving `φ` through the `φsΛ`-uncontracted `FieldOp` in `φ₀…φₖ₋₁`,
|
||||
- the sign associated with moving `φ` through all the `FieldOp` in `φ₀…φᵢ₋₁`,
|
||||
|
@ -906,7 +906,7 @@ lemma sign_insert_some_of_not_lt (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
|||
|
||||
/--
|
||||
For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, and a `k` in `φsΛ.uncontracted`,
|
||||
`𝓕.FieldOp`, and a `k` in `φsΛ.uncontracted`,
|
||||
the sign of `φsΛ ↩Λ φ 0 (some k)` is equal to the product of
|
||||
- the sign associated with moving `φ` through the `φsΛ`-uncontracted `FieldOp` in `φ₀…φₖ₋₁`,
|
||||
- the sign of `φsΛ`.
|
||||
|
|
|
@ -429,7 +429,7 @@ lemma join_sign {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length)
|
|||
(join φsΛ φsucΛ).sign = φsΛ.sign * φsucΛ.sign :=
|
||||
join_sign_induction φsΛ φsucΛ hc (φsΛ).1.card rfl
|
||||
|
||||
/-- For a list `φs` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`,
|
||||
/-- For a list `φs` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`,
|
||||
and a Wick contraction `φsucΛ` of `[φsΛ]ᵘᶜ`,
|
||||
`(join φsΛ φsucΛ).sign • (join φsΛ φsucΛ).timeContract` is equal to the product of
|
||||
- `φsΛ.sign • φsΛ.timeContract` and
|
||||
|
|
|
@ -31,7 +31,7 @@ noncomputable def staticContract {φs : List 𝓕.FieldOp}
|
|||
superCommute_anPart_ofFieldOp_mem_center _ _⟩
|
||||
|
||||
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, and a `i ≤ φs.length` the following relation holds
|
||||
`𝓕.FieldOp`, and a `i ≤ φs.length` the following relation holds
|
||||
|
||||
`(φsΛ ↩Λ φ i none).staticContract = φsΛ.staticContract`
|
||||
|
||||
|
@ -46,10 +46,9 @@ lemma staticContract_insert_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
|||
ext a
|
||||
simp
|
||||
|
||||
|
||||
/--
|
||||
For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted`, then
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted`, then
|
||||
`(φsΛ ↩Λ φ i (some k)).staticContract` is equal to the product of
|
||||
- `[anPart φ, φs[k]]ₛ` if `i ≤ k` or `[anPart φs[k], φ]ₛ` if `k < i`
|
||||
- `φsΛ.staticContract`.
|
||||
|
|
|
@ -31,7 +31,7 @@ noncomputable def timeContract {φs : List 𝓕.FieldOp}
|
|||
timeContract_mem_center _ _⟩
|
||||
|
||||
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, and a `i ≤ φs.length` the following relation holds
|
||||
`𝓕.FieldOp`, and a `i ≤ φs.length` the following relation holds
|
||||
|
||||
`(φsΛ ↩Λ φ i none).timeContract = φsΛ.timeContract`
|
||||
|
||||
|
@ -45,8 +45,8 @@ lemma timeContract_insert_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
|||
ext a
|
||||
simp
|
||||
|
||||
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted`, then
|
||||
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted`, then
|
||||
`(φsΛ ↩Λ φ i (some k)).timeContract` is equal to the product of
|
||||
- `timeContract φ φs[k]` if `i ≤ k` or `timeContract φs[k] φ` if `k < i`
|
||||
- `φsΛ.timeContract`.
|
||||
|
@ -80,7 +80,7 @@ lemma timeContract_empty (φs : List 𝓕.FieldOp) :
|
|||
open FieldStatistic
|
||||
|
||||
/-! For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted` such that `i ≤ k`, with the
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted` such that `i ≤ k`, with the
|
||||
condition that `φ` has greater or equal time to `φs[k]`, then
|
||||
`(φsΛ ↩Λ φ i (some k)).timeContract` is equal to the product of
|
||||
- `[anPart φ, φs[k]]ₛ`
|
||||
|
@ -124,7 +124,7 @@ lemma timeContract_insert_some_of_lt
|
|||
· exact ht
|
||||
|
||||
/-! For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted` such that `k < i`, with the
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted` such that `k < i`, with the
|
||||
condition that `φs[k]` does not have has greater or equal time to `φ`, then
|
||||
`(φsΛ ↩Λ φ i (some k)).timeContract` is equal to the product of
|
||||
- `[anPart φ, φs[k]]ₛ`
|
||||
|
|
|
@ -315,7 +315,7 @@ lemma take_uncontractedIndexEquiv_symm (k : c.uncontracted) :
|
|||
-/
|
||||
|
||||
/-- Given a Wick Contraction `φsΛ` of a list `φs` of `𝓕.FieldOp`. The list
|
||||
`φsΛ.uncontractedListGet` of `𝓕.FieldOp` is defined as the list `φs` with
|
||||
`φsΛ.uncontractedListGet` of `𝓕.FieldOp` is defined as the list `φs` with
|
||||
all contracted positions removed, leaving the uncontracted `𝓕.FieldOp`.
|
||||
|
||||
The notation `[φsΛ]ᵘᶜ` is used for `φsΛ.uncontractedListGet`. -/
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue