refactor: Lint

This commit is contained in:
jstoobysmith 2025-02-07 10:34:48 +00:00
parent cb2f8a30bf
commit cecc75cf46
17 changed files with 36 additions and 43 deletions

View file

@ -226,7 +226,7 @@ lemma ι_normalOrderF_eq_of_equiv (a b : 𝓕.FieldOpFreeAlgebra) (h : a ≈ b)
defined as the decent of `ι ∘ₗ normalOrderF` from `FieldOpFreeAlgebra 𝓕` to `FieldOpAlgebra 𝓕`.
This decent exists because `ι ∘ₗ normalOrderF` is well-defined on equivalence classes.
The notation `𝓝(a)` is used for `normalOrder a`. -/
The notation `𝓝(a)` is used for `normalOrder a`. -/
noncomputable def normalOrder : FieldOpAlgebra 𝓕 →ₗ[] FieldOpAlgebra 𝓕 where
toFun := Quotient.lift (ι.toLinearMap ∘ₗ normalOrderF) ι_normalOrderF_eq_of_equiv
map_add' x y := by

View file

@ -118,7 +118,6 @@ lemma crPart_mul_normalOrder (φ : 𝓕.FieldOp) (a : 𝓕.FieldOpAlgebra) :
-/
/-- For a field specfication `𝓕`, and `a` and `b` in `𝓕.FieldOpAlgebra` the normal ordering
of the super commutator of `a` and `b` vanishes. I.e. `𝓝([a,b]ₛ) = 0`. -/
@[simp]
@ -351,7 +350,7 @@ the following relation holds in the algebra `𝓕.FieldOpAlgebra`,
The proof of ultimetly goes as follows:
- `ofFieldOp_eq_crPart_add_anPart` is used to split `φ` into its creation and annihilation parts.
- The fact that `crPart φ * 𝓝(φ₀φ₁…φₙ) = 𝓝(crPart φ * φ₀φ₁…φₙ)` is used.
- The fact that `crPart φ * 𝓝(φ₀φ₁…φₙ) = 𝓝(crPart φ * φ₀φ₁…φₙ)` is used.
- The fact that `anPart φ * 𝓝(φ₀φ₁…φₙ)` is
`𝓢(φ, φ₀φ₁…φₙ) 𝓝(φ₀φ₁…φₙ) * anPart φ + [anPart φ, 𝓝(φ₀φ₁…φₙ)]` is used
- The fact that `𝓢(φ, φ₀φ₁…φₙ) 𝓝(φ₀φ₁…φₙ) * anPart φ = 𝓝(anPart φ * φ₀φ₁…φₙ)`

View file

@ -26,7 +26,7 @@ variable {𝓕 : FieldSpecification}
-/
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
`𝓕.FieldOp`, and a `i ≤ φs.length` the following relation holds
`𝓕.FieldOp`, and a `i ≤ φs.length` the following relation holds
`𝓝([φsΛ ↩Λ φ i none]ᵘᶜ) = s • 𝓝(φ :: [φsΛ]ᵘᶜ)`
@ -100,7 +100,7 @@ lemma normalOrder_uncontracted_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp
/--
For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted`, then
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted`, then
`𝓝([φsΛ ↩Λ φ i (some k)]ᵘᶜ)` is equal to the normal ordering of `[φsΛ]ᵘᶜ` with the `FieldOp`
corresponding to `k` removed.