refactor: Lint
This commit is contained in:
parent
cb2f8a30bf
commit
cecc75cf46
17 changed files with 36 additions and 43 deletions
|
@ -24,7 +24,7 @@ open HepLean.Fin
|
|||
|
||||
-/
|
||||
|
||||
/-- Given a Wick contraction `φsΛ` for a list `φs` of `𝓕.FieldOp`,
|
||||
/-- Given a Wick contraction `φsΛ` for a list `φs` of `𝓕.FieldOp`,
|
||||
a `𝓕.FieldOp` `φ`, an `i ≤ φs.length` and a `j` which is either `none` or
|
||||
some element of `φsΛ.uncontracted`, the new Wick contraction
|
||||
`φsΛ.insertAndContract φ i j` is defined by inserting `φ` into `φs` after
|
||||
|
@ -285,7 +285,7 @@ lemma insert_fin_eq_self (φ : 𝓕.FieldOp) {φs : List 𝓕.FieldOp}
|
|||
rfl
|
||||
|
||||
/-- For a list `φs` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` a sum over
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` a sum over
|
||||
Wick contractions of `φs` with `φ` inserted at `i` is equal to the sum over Wick contractions
|
||||
`φsΛ` of just `φs` and the sum over optional uncontracted elements of the `φsΛ`.
|
||||
|
||||
|
|
|
@ -255,7 +255,7 @@ lemma sign_insert_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
|||
exact hG
|
||||
|
||||
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a graded compliant Wick contraction `φsΛ` of `φs`,
|
||||
and a `φ` in `𝓕.FieldOp`, the following relation holds
|
||||
and a `φ` in `𝓕.FieldOp`, the following relation holds
|
||||
`(φsΛ ↩Λ φ 0 none).sign = φsΛ.sign`.
|
||||
|
||||
This is a direct corollary of `sign_insert_none`. -/
|
||||
|
|
|
@ -856,7 +856,7 @@ lemma signInsertSome_mul_filter_contracted_of_not_lt (φ : 𝓕.FieldOp) (φs :
|
|||
|
||||
/--
|
||||
For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted` such that `k<i`,
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted` such that `k<i`,
|
||||
the sign of `φsΛ ↩Λ φ i (some k)` is equal to the product of
|
||||
- the sign associated with moving `φ` through the `φsΛ`-uncontracted `FieldOp` in `φ₀…φₖ`,
|
||||
- the sign associated with moving `φ` through all `FieldOp` in `φ₀…φᵢ₋₁`,
|
||||
|
@ -881,7 +881,7 @@ lemma sign_insert_some_of_lt (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
|||
|
||||
/--
|
||||
For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted` such that `i ≤ k`,
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted` such that `i ≤ k`,
|
||||
the sign of `φsΛ ↩Λ φ i (some k)` is equal to the product of
|
||||
- the sign associated with moving `φ` through the `φsΛ`-uncontracted `FieldOp` in `φ₀…φₖ₋₁`,
|
||||
- the sign associated with moving `φ` through all the `FieldOp` in `φ₀…φᵢ₋₁`,
|
||||
|
@ -906,7 +906,7 @@ lemma sign_insert_some_of_not_lt (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
|||
|
||||
/--
|
||||
For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, and a `k` in `φsΛ.uncontracted`,
|
||||
`𝓕.FieldOp`, and a `k` in `φsΛ.uncontracted`,
|
||||
the sign of `φsΛ ↩Λ φ 0 (some k)` is equal to the product of
|
||||
- the sign associated with moving `φ` through the `φsΛ`-uncontracted `FieldOp` in `φ₀…φₖ₋₁`,
|
||||
- the sign of `φsΛ`.
|
||||
|
|
|
@ -429,7 +429,7 @@ lemma join_sign {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length)
|
|||
(join φsΛ φsucΛ).sign = φsΛ.sign * φsucΛ.sign :=
|
||||
join_sign_induction φsΛ φsucΛ hc (φsΛ).1.card rfl
|
||||
|
||||
/-- For a list `φs` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`,
|
||||
/-- For a list `φs` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`,
|
||||
and a Wick contraction `φsucΛ` of `[φsΛ]ᵘᶜ`,
|
||||
`(join φsΛ φsucΛ).sign • (join φsΛ φsucΛ).timeContract` is equal to the product of
|
||||
- `φsΛ.sign • φsΛ.timeContract` and
|
||||
|
|
|
@ -31,7 +31,7 @@ noncomputable def staticContract {φs : List 𝓕.FieldOp}
|
|||
superCommute_anPart_ofFieldOp_mem_center _ _⟩
|
||||
|
||||
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, and a `i ≤ φs.length` the following relation holds
|
||||
`𝓕.FieldOp`, and a `i ≤ φs.length` the following relation holds
|
||||
|
||||
`(φsΛ ↩Λ φ i none).staticContract = φsΛ.staticContract`
|
||||
|
||||
|
@ -46,10 +46,9 @@ lemma staticContract_insert_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
|||
ext a
|
||||
simp
|
||||
|
||||
|
||||
/--
|
||||
For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted`, then
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted`, then
|
||||
`(φsΛ ↩Λ φ i (some k)).staticContract` is equal to the product of
|
||||
- `[anPart φ, φs[k]]ₛ` if `i ≤ k` or `[anPart φs[k], φ]ₛ` if `k < i`
|
||||
- `φsΛ.staticContract`.
|
||||
|
|
|
@ -31,7 +31,7 @@ noncomputable def timeContract {φs : List 𝓕.FieldOp}
|
|||
timeContract_mem_center _ _⟩
|
||||
|
||||
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, and a `i ≤ φs.length` the following relation holds
|
||||
`𝓕.FieldOp`, and a `i ≤ φs.length` the following relation holds
|
||||
|
||||
`(φsΛ ↩Λ φ i none).timeContract = φsΛ.timeContract`
|
||||
|
||||
|
@ -45,8 +45,8 @@ lemma timeContract_insert_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
|||
ext a
|
||||
simp
|
||||
|
||||
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted`, then
|
||||
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted`, then
|
||||
`(φsΛ ↩Λ φ i (some k)).timeContract` is equal to the product of
|
||||
- `timeContract φ φs[k]` if `i ≤ k` or `timeContract φs[k] φ` if `k < i`
|
||||
- `φsΛ.timeContract`.
|
||||
|
@ -80,7 +80,7 @@ lemma timeContract_empty (φs : List 𝓕.FieldOp) :
|
|||
open FieldStatistic
|
||||
|
||||
/-! For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted` such that `i ≤ k`, with the
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted` such that `i ≤ k`, with the
|
||||
condition that `φ` has greater or equal time to `φs[k]`, then
|
||||
`(φsΛ ↩Λ φ i (some k)).timeContract` is equal to the product of
|
||||
- `[anPart φ, φs[k]]ₛ`
|
||||
|
@ -124,7 +124,7 @@ lemma timeContract_insert_some_of_lt
|
|||
· exact ht
|
||||
|
||||
/-! For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted` such that `k < i`, with the
|
||||
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted` such that `k < i`, with the
|
||||
condition that `φs[k]` does not have has greater or equal time to `φ`, then
|
||||
`(φsΛ ↩Λ φ i (some k)).timeContract` is equal to the product of
|
||||
- `[anPart φ, φs[k]]ₛ`
|
||||
|
|
|
@ -315,7 +315,7 @@ lemma take_uncontractedIndexEquiv_symm (k : c.uncontracted) :
|
|||
-/
|
||||
|
||||
/-- Given a Wick Contraction `φsΛ` of a list `φs` of `𝓕.FieldOp`. The list
|
||||
`φsΛ.uncontractedListGet` of `𝓕.FieldOp` is defined as the list `φs` with
|
||||
`φsΛ.uncontractedListGet` of `𝓕.FieldOp` is defined as the list `φs` with
|
||||
all contracted positions removed, leaving the uncontracted `𝓕.FieldOp`.
|
||||
|
||||
The notation `[φsΛ]ᵘᶜ` is used for `φsΛ.uncontractedListGet`. -/
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue