refactor: Lint

This commit is contained in:
jstoobysmith 2025-02-07 10:34:48 +00:00
parent cb2f8a30bf
commit cecc75cf46
17 changed files with 36 additions and 43 deletions

View file

@ -31,7 +31,7 @@ noncomputable def timeContract {φs : List 𝓕.FieldOp}
timeContract_mem_center _ _⟩
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
`𝓕.FieldOp`, and a `i ≤ φs.length` the following relation holds
`𝓕.FieldOp`, and a `i ≤ φs.length` the following relation holds
`(φsΛ ↩Λ φ i none).timeContract = φsΛ.timeContract`
@ -45,8 +45,8 @@ lemma timeContract_insert_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
ext a
simp
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted`, then
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted`, then
`(φsΛ ↩Λ φ i (some k)).timeContract` is equal to the product of
- `timeContract φ φs[k]` if `i ≤ k` or `timeContract φs[k] φ` if `k < i`
- `φsΛ.timeContract`.
@ -80,7 +80,7 @@ lemma timeContract_empty (φs : List 𝓕.FieldOp) :
open FieldStatistic
/-! For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted` such that `i ≤ k`, with the
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted` such that `i ≤ k`, with the
condition that `φ` has greater or equal time to `φs[k]`, then
`(φsΛ ↩Λ φ i (some k)).timeContract` is equal to the product of
- `[anPart φ, φs[k]]ₛ`
@ -124,7 +124,7 @@ lemma timeContract_insert_some_of_lt
· exact ht
/-! For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted` such that `k < i`, with the
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted` such that `k < i`, with the
condition that `φs[k]` does not have has greater or equal time to `φ`, then
`(φsΛ ↩Λ φ i (some k)).timeContract` is equal to the product of
- `[anPart φ, φs[k]]ₛ`