feat: Double contraction of indices lemma

This commit is contained in:
jstoobysmith 2024-08-06 15:43:58 -04:00
parent 9123431424
commit d02e94886d
10 changed files with 543 additions and 362 deletions

View file

@ -45,7 +45,7 @@ structure TensorColor where
namespace TensorColor
variable (𝓒 : TensorColor) [Fintype 𝓒.Color] [DecidableEq 𝓒.Color]
variable {d : } {X Y Y' Z W : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
variable {d : } {X X' Y Y' Z W : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] [Fintype W] [DecidableEq W]
/-- A relation on colors which is true if the two colors are equal or are duals. -/
@ -95,6 +95,55 @@ instance (μ ν : 𝓒.Color) : Decidable (μ ≈ ν) :=
instance : DecidableEq (Quotient 𝓒.colorSetoid) :=
instDecidableEqQuotientOfDecidableEquiv
/-- The types of maps from an `X` to `𝓒.Color`. -/
def ColorMap (X : Type) := X → 𝓒.Color
namespace ColorMap
variable {𝓒 : TensorColor} [Fintype 𝓒.Color] [DecidableEq 𝓒.Color]
variable (cX : ColorMap 𝓒 X) (cY : ColorMap 𝓒 Y) (cZ : ColorMap 𝓒 Z)
def MapIso (e : X ≃ Y) (cX : ColorMap 𝓒 X) (cY : ColorMap 𝓒 Y) : Prop := cX = cY ∘ e
def sum (cX : ColorMap 𝓒 X) (cY : ColorMap 𝓒 Y) : ColorMap 𝓒 (Sum X Y) :=
Sum.elim cX cY
def dual (cX : ColorMap 𝓒 X) : ColorMap 𝓒 X := 𝓒.τ ∘ cX
namespace MapIso
variable {e : X ≃ Y} {e' : Y ≃ Z} {cX : ColorMap 𝓒 X} {cY : ColorMap 𝓒 Y} {cZ : ColorMap 𝓒 Z}
variable {cX' : ColorMap 𝓒 X'} {cY' : ColorMap 𝓒 Y'}
lemma symm (h : cX.MapIso e cY) : cY.MapIso e.symm cX := by
rw [MapIso] at h
exact (Equiv.eq_comp_symm e cY cX).mpr h.symm
lemma trans (h : cX.MapIso e cY) (h' : cY.MapIso e' cZ) :
cX.MapIso (e.trans e') cZ:= by
funext a
subst h h'
simp
lemma sum {eX : X ≃ X'} {eY : Y ≃ Y'} (hX : cX.MapIso eX cX') (hY : cY.MapIso eY cY') :
(cX.sum cY).MapIso (eX.sumCongr eY) (cX'.sum cY') := by
funext x
subst hX hY
match x with
| Sum.inl x => rfl
| Sum.inr x => rfl
lemma dual {e : X ≃ Y} (h : cX.MapIso e cY) :
cX.dual.MapIso e cY.dual := by
subst h
rfl
end MapIso
end ColorMap
end TensorColor
noncomputable section
@ -179,8 +228,8 @@ variable (𝓣 : TensorStructure R)
variable {d : } {X Y Y' Z W : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] [Fintype W] [DecidableEq W]
{cX cX2 : X → 𝓣.Color} {cY : Y → 𝓣.Color} {cZ : Z → 𝓣.Color}
{cW : W → 𝓣.Color} {cY' : Y' → 𝓣.Color} {μ ν η : 𝓣.Color}
{cX cX2 : 𝓣.ColorMap X} {cY : 𝓣.ColorMap Y} {cZ : 𝓣.ColorMap Z}
{cW : 𝓣.ColorMap W} {cY' : 𝓣.ColorMap Y'} {μ ν η : 𝓣.Color}
instance : AddCommMonoid (𝓣.ColorModule μ) := 𝓣.colorModule_addCommMonoid μ
@ -188,7 +237,7 @@ instance : Module R (𝓣.ColorModule μ) := 𝓣.colorModule_module μ
/-- The type of tensors given a map from an indexing set `X` to the type of colors,
specifying the color of that index. -/
def Tensor (c : X → 𝓣.Color) : Type := ⨂[R] x, 𝓣.ColorModule (c x)
def Tensor (c : 𝓣.ColorMap X) : Type := ⨂[R] x, 𝓣.ColorModule (c x)
instance : AddCommMonoid (𝓣.Tensor cX) :=
PiTensorProduct.instAddCommMonoid fun i => 𝓣.ColorModule (cX i)
@ -246,20 +295,14 @@ lemma tensorProd_piTensorProd_ext {M : Type} [AddCommMonoid M] [Module R M]
-/
/-- An linear equivalence of tensor spaces given a color-preserving equivalence of indexing sets. -/
def mapIso {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = d ∘ e) :
def mapIso {c : 𝓣.ColorMap X} {d : 𝓣.ColorMap Y} (e : X ≃ Y) (h : c.MapIso e d) :
𝓣.Tensor c ≃ₗ[R] 𝓣.Tensor d :=
(PiTensorProduct.reindex R _ e) ≪≫ₗ
(PiTensorProduct.congr (fun y => 𝓣.colorModuleCast (by rw [h]; simp)))
lemma mapIso_trans_cond {e : X ≃ Y} {e' : Y ≃ Z} (h : cX = cY ∘ e) (h' : cY = cZ ∘ e') :
cX = cZ ∘ (e.trans e') := by
funext a
subst h h'
simp
@[simp]
lemma mapIso_trans (e : X ≃ Y) (e' : Y ≃ Z) (h : cX = cY ∘ e) (h' : cY = cZ ∘ e') :
(𝓣.mapIso e h ≪≫ₗ 𝓣.mapIso e' h') = 𝓣.mapIso (e.trans e') (𝓣.mapIso_trans_cond h h') := by
lemma mapIso_trans (e : X ≃ Y) (e' : Y ≃ Z) (h : cX.MapIso e cY) (h' : cY.MapIso e' cZ) :
(𝓣.mapIso e h ≪≫ₗ 𝓣.mapIso e' h') = 𝓣.mapIso (e.trans e') (h.trans h') := by
refine LinearEquiv.toLinearMap_inj.mp ?_
apply PiTensorProduct.ext
apply MultilinearMap.ext
@ -276,14 +319,14 @@ lemma mapIso_trans (e : X ≃ Y) (e' : Y ≃ Z) (h : cX = cY ∘ e) (h' : cY = c
simp [colorModuleCast]
@[simp]
lemma mapIso_mapIso (e : X ≃ Y) (e' : Y ≃ Z) (h : cX = cY ∘ e) (h' : cY = cZ ∘ e')
lemma mapIso_mapIso (e : X ≃ Y) (e' : Y ≃ Z) (h : cX.MapIso e cY) (h' : cY.MapIso e' cZ)
(T : 𝓣.Tensor cX) :
(𝓣.mapIso e' h') (𝓣.mapIso e h T) = 𝓣.mapIso (e.trans e') (𝓣.mapIso_trans_cond h h') T := by
(𝓣.mapIso e' h') (𝓣.mapIso e h T) = 𝓣.mapIso (e.trans e') (h.trans h') T := by
rw [← LinearEquiv.trans_apply, mapIso_trans]
@[simp]
lemma mapIso_symm (e : X ≃ Y) (h : cX = cY ∘ e) :
(𝓣.mapIso e h).symm = 𝓣.mapIso e.symm ((Equiv.eq_comp_symm e cY cX).mpr h.symm) := by
lemma mapIso_symm (e : X ≃ Y) (h : cX.MapIso e cY) :
(𝓣.mapIso e h).symm = 𝓣.mapIso e.symm (h.symm) := by
refine LinearEquiv.toLinearMap_inj.mp ?_
apply PiTensorProduct.ext
apply MultilinearMap.ext
@ -321,10 +364,10 @@ lemma mapIso_refl : 𝓣.mapIso (Equiv.refl X) (rfl : cX = cX) = LinearEquiv.ref
rfl
@[simp]
lemma mapIso_tprod {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = d ∘ e)
lemma mapIso_tprod {c : 𝓣.ColorMap X} {d : 𝓣.ColorMap Y} (e : X ≃ Y) (h : c.MapIso e d)
(f : (i : X) → 𝓣.ColorModule (c i)) : (𝓣.mapIso e h) (PiTensorProduct.tprod R f) =
(PiTensorProduct.tprod R (fun i => 𝓣.colorModuleCast (by rw [h]; simp) (f (e.symm i)))) := by
simp [mapIso]
simp only [mapIso, LinearEquiv.trans_apply]
change (PiTensorProduct.congr fun y => 𝓣.colorModuleCast _)
((PiTensorProduct.reindex R _ e) ((PiTensorProduct.tprod R) f)) = _
rw [PiTensorProduct.reindex_tprod]
@ -523,26 +566,26 @@ lemma tensoratorEquiv_tmul_tprod (p : 𝓣.PureTensor cX) (q : 𝓣.PureTensor c
lift.tmul, LinearMap.coe_mk, AddHom.coe_mk, PiTensorProduct.lift.tprod]
exact PiTensorProduct.lift.tprod q
lemma tensoratorEquiv_mapIso_cond {e : X ≃ Y} {e' : Z ≃ Y} {e'' : W ≃ X}
(h : cX = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') (h'' : bW = cX ∘ e'') :
Sum.elim bW cZ = Sum.elim cX cY ∘ ⇑(e''.sumCongr e') := by
subst h h' h''
funext x
match x with
| Sum.inl x => rfl
| Sum.inr x => rfl
@[simp]
lemma tensoratorEquiv_symm_tprod (f : 𝓣.PureTensor (Sum.elim cX cY)) :
(𝓣.tensoratorEquiv cX cY).symm ((PiTensorProduct.tprod R) f) =
(PiTensorProduct.tprod R) (𝓣.inlPureTensor f) ⊗ₜ[R] (PiTensorProduct.tprod R) (𝓣.inrPureTensor f) := by
simp [tensoratorEquiv, tensorator]
change (PiTensorProduct.lift 𝓣.domCoprod) ((PiTensorProduct.tprod R) f) = _
simp [domCoprod]
@[simp]
lemma tensoratorEquiv_mapIso (e : X ≃ Y) (e' : Z ≃ Y) (e'' : W ≃ X)
(h : cX = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') (h'' : bW = cX ∘ e'') :
lemma tensoratorEquiv_mapIso (e' : Z ≃ Y) (e'' : W ≃ X)
(h' : cZ.MapIso e' cY) (h'' : cW.MapIso e'' cX) :
(TensorProduct.congr (𝓣.mapIso e'' h'') (𝓣.mapIso e' h')) ≪≫ₗ (𝓣.tensoratorEquiv cX cY)
= (𝓣.tensoratorEquiv bW cZ)
≪≫ₗ (𝓣.mapIso (Equiv.sumCongr e'' e') (𝓣.tensoratorEquiv_mapIso_cond h h' h'')) := by
= (𝓣.tensoratorEquiv cW cZ) ≪≫ₗ (𝓣.mapIso (Equiv.sumCongr e'' e') (h''.sum h')) := by
apply LinearEquiv.toLinearMap_inj.mp
apply tensorProd_piTensorProd_ext
intro p q
simp only [LinearEquiv.coe_coe, LinearEquiv.trans_apply, congr_tmul, mapIso_tprod,
tensoratorEquiv_tmul_tprod, Equiv.sumCongr_symm, Equiv.sumCongr_apply]
tensoratorEquiv_tmul_tprod]
erw [LinearEquiv.trans_apply]
simp only [tensoratorEquiv_tmul_tprod, mapIso_tprod, Equiv.sumCongr_symm, Equiv.sumCongr_apply]
apply congrArg
funext x
match x with
@ -550,30 +593,26 @@ lemma tensoratorEquiv_mapIso (e : X ≃ Y) (e' : Z ≃ Y) (e'' : W ≃ X)
| Sum.inr x => rfl
@[simp]
lemma tensoratorEquiv_mapIso_apply (e : X ≃ Y) (e' : Z ≃ Y) (e'' : W ≃ X)
(h : cX = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') (h'' : cW = cX ∘ e'')
lemma tensoratorEquiv_mapIso_apply (e' : Z ≃ Y) (e'' : W ≃ X)
(h' : cZ.MapIso e' cY) (h'' : cW.MapIso e'' cX)
(x : 𝓣.Tensor cW ⊗[R] 𝓣.Tensor cZ) :
(𝓣.tensoratorEquiv cX cY) ((TensorProduct.congr (𝓣.mapIso e'' h'') (𝓣.mapIso e' h')) x) =
(𝓣.mapIso (Equiv.sumCongr e'' e') (𝓣.tensoratorEquiv_mapIso_cond h h' h''))
(𝓣.mapIso (Equiv.sumCongr e'' e') (h''.sum h'))
((𝓣.tensoratorEquiv cW cZ) x) := by
trans ((TensorProduct.congr (𝓣.mapIso e'' h'') (𝓣.mapIso e' h')) ≪≫ₗ
(𝓣.tensoratorEquiv cX cY)) x
rfl
rw [tensoratorEquiv_mapIso]
rfl
exact e
exact h
lemma tensoratorEquiv_mapIso_tmul (e : X ≃ Y) (e' : Z ≃ Y) (e'' : W ≃ X)
(h : cX = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') (h'' : cW = cX ∘ e'')
lemma tensoratorEquiv_mapIso_tmul (e' : Z ≃ Y) (e'' : W ≃ X)
(h' : cZ.MapIso e' cY) (h'' : cW.MapIso e'' cX)
(x : 𝓣.Tensor cW) (y : 𝓣.Tensor cZ) :
(𝓣.tensoratorEquiv cX cY) ((𝓣.mapIso e'' h'' x) ⊗ₜ[R] (𝓣.mapIso e' h' y)) =
(𝓣.mapIso (Equiv.sumCongr e'' e') (𝓣.tensoratorEquiv_mapIso_cond h h' h''))
(𝓣.mapIso (Equiv.sumCongr e'' e') (h''.sum h'))
((𝓣.tensoratorEquiv cW cZ) (x ⊗ₜ y)) := by
rw [← tensoratorEquiv_mapIso_apply]
rfl
exact e
exact h
/-!
@ -626,9 +665,24 @@ lemma contrDual_symm_contrRightAux_apply_tmul (h : ν = η)
/-!
## Of empty
-/
def isEmptyEquiv [IsEmpty X] : 𝓣.Tensor cX ≃ₗ[R] R :=
PiTensorProduct.isEmptyEquiv X
@[simp]
def isEmptyEquiv_tprod [IsEmpty X] (f : 𝓣.PureTensor cX) :
𝓣.isEmptyEquiv (PiTensorProduct.tprod R f) = 1 := by
simp only [isEmptyEquiv]
erw [PiTensorProduct.isEmptyEquiv_apply_tprod]
/-!
## Splitting tensors into tensor products
-/
/-! TODO: Delete the content of this section. -/
/-- The decomposition of a set into a direct sum based on the image of an injection. -/
def decompEmbedSet (f : Y ↪ X) :