refactor: LInt
This commit is contained in:
parent
e963be5ef8
commit
d058f41689
11 changed files with 38 additions and 50 deletions
|
@ -86,7 +86,6 @@ lemma toFin1dℝ_eq_val (ψ : ContrMod d) : ψ.toFin1dℝ = ψ.val := by rfl
|
|||
@[simps!]
|
||||
def stdBasis : Basis (Fin 1 ⊕ Fin d) ℝ (ContrMod d) := Basis.ofEquivFun toFin1dℝEquiv
|
||||
|
||||
|
||||
@[simp]
|
||||
lemma stdBasis_toFin1dℝEquiv_apply_same (μ : Fin 1 ⊕ Fin d) :
|
||||
toFin1dℝEquiv (stdBasis μ) μ = 1 := by
|
||||
|
@ -121,7 +120,7 @@ lemma stdBasis_apply (μ ν : Fin 1 ⊕ Fin d) : (stdBasis μ).val ν = if μ =
|
|||
/-- Decomposition of a contrvariant Lorentz vector into the standard basis. -/
|
||||
lemma stdBasis_decomp (v : ContrMod d) : v = ∑ i, v.toFin1dℝ i • stdBasis i := by
|
||||
apply toFin1dℝEquiv.injective
|
||||
simp only [map_sum, _root_.map_smul]
|
||||
simp only [map_sum, _root_.map_smul]
|
||||
funext μ
|
||||
rw [Fintype.sum_apply μ fun c => toFin1dℝEquiv v c • toFin1dℝEquiv (stdBasis c)]
|
||||
change _ = ∑ x : Fin 1 ⊕ Fin d, toFin1dℝEquiv v x • (toFin1dℝEquiv (stdBasis x) μ)
|
||||
|
@ -189,7 +188,6 @@ def toSpace (v : ContrMod d) : EuclideanSpace ℝ (Fin d) := v.val ∘ Sum.inr
|
|||
|
||||
-/
|
||||
|
||||
|
||||
/-- The representation of the Lorentz group acting on `ContrℝModule d`. -/
|
||||
def rep : Representation ℝ (LorentzGroup d) (ContrMod d) where
|
||||
toFun g := Matrix.toLinAlgEquiv stdBasis g
|
||||
|
@ -237,7 +235,6 @@ lemma toSelfAdjoint_apply_coe (x : ContrMod 3) : (toSelfAdjoint x).1 =
|
|||
rw [toSelfAdjoint_apply]
|
||||
rfl
|
||||
|
||||
|
||||
lemma toSelfAdjoint_stdBasis (i : Fin 1 ⊕ Fin 3) :
|
||||
toSelfAdjoint (stdBasis i) = PauliMatrix.σSAL i := by
|
||||
rw [toSelfAdjoint_apply]
|
||||
|
@ -352,11 +349,10 @@ lemma stdBasis_apply (μ ν : Fin 1 ⊕ Fin d) : (stdBasis μ).val ν = if μ =
|
|||
refine ite_congr ?h₁ (congrFun rfl) (congrFun rfl)
|
||||
exact Eq.propIntro (fun a => id (Eq.symm a)) fun a => id (Eq.symm a)
|
||||
|
||||
|
||||
/-- Decomposition of a covariant Lorentz vector into the standard basis. -/
|
||||
lemma stdBasis_decomp (v : CoMod d) : v = ∑ i, v.toFin1dℝ i • stdBasis i := by
|
||||
apply toFin1dℝEquiv.injective
|
||||
simp only [map_sum, _root_.map_smul]
|
||||
simp only [map_sum, _root_.map_smul]
|
||||
funext μ
|
||||
rw [Fintype.sum_apply μ fun c => toFin1dℝEquiv v c • toFin1dℝEquiv (stdBasis c)]
|
||||
change _ = ∑ x : Fin 1 ⊕ Fin d, toFin1dℝEquiv v x • (toFin1dℝEquiv (stdBasis x) μ)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue