refactor: Lint

This commit is contained in:
jstoobysmith 2025-03-21 07:16:34 -04:00
parent 277538424a
commit d12947909d

View file

@ -42,17 +42,18 @@ where
simp only [Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
Finset.sum_singleton]
rw [minkowskiMatrix.inl_0_inl_0]
simp
simp only [Fin.isValue, and_true, one_div, reduceCtorEq, and_false, ↓reduceIte, neg_mul,
mul_ite, mul_neg, mul_one, mul_zero, ite_mul, zero_mul, Sum.inr.injEq]
conv_lhs =>
enter [2, 2, x]
rw [minkowskiMatrix.inr_i_inr_i]
simp
simp only [Fin.isValue, mul_neg, mul_one, neg_mul, neg_neg]
have hb1 : √(1 - β ^ 2) ^ 2 = 1 - β ^ 2 := by
refine Real.sq_sqrt ?_
simp
simp only [sub_nonneg, sq_le_one_iff_abs_le_one]
exact le_of_lt hβ
have hb2 : 1 - β ^ 2 ≠ 0 := by
simp [sub_ne_zero, hb1]
simp only [ne_eq, sub_ne_zero]
by_contra h
have hl : 1 ^ 2 = β ^ 2 := by
rw [← h]
@ -62,20 +63,22 @@ where
simp at hβ
by_cases hj : j = Sum.inl 0
· subst hj
simp [minkowskiMatrix.inl_0_inl_0]
simp only [Fin.isValue, ↓reduceIte, minkowskiMatrix.inl_0_inl_0, one_mul, true_and,
reduceCtorEq, false_and]
rw [Finset.sum_eq_single i]
· simp
by_cases hk : k = Sum.inl 0
· subst hk
simp
simp only [Fin.isValue, ↓reduceIte, one_apply_eq]
ring_nf
field_simp [hb1, hb2]
ring
· simp [hk]
· simp only [Fin.isValue, hk, ↓reduceIte]
by_cases hk' : k = Sum.inr i
· simp [hk']
· simp only [hk', ↓reduceIte, Fin.isValue, ne_eq, reduceCtorEq, not_false_eq_true,
one_apply_ne]
ring
· simp [hk', hk]
· simp only [hk', ↓reduceIte, Fin.isValue]
rw [one_apply_ne fun a => hk (id (Eq.symm a))]
rw [if_neg (by exact fun a => hk (id (Eq.symm a)))]
rw [if_neg (by exact fun a => hk' (id (Eq.symm a)))]
@ -86,8 +89,7 @@ where
· match j with
| Sum.inl 0 => simp at hj
| Sum.inr j =>
rw [minkowskiMatrix.inr_i_inr_i]
rw [Finset.sum_eq_single j]
rw [minkowskiMatrix.inr_i_inr_i, Finset.sum_eq_single j]
· by_cases hj' : j = i
· subst hj'
conv_lhs =>
@ -98,25 +100,27 @@ where
simp only [Fin.isValue]
match k with
| Sum.inl 0 =>
simp
simp only [Fin.isValue, ↓reduceIte, reduceCtorEq, neg_mul, one_mul, neg_neg, and_self,
and_true, ne_eq, not_false_eq_true, one_apply_ne]
ring
| Sum.inr k =>
by_cases hk : k = j
· subst hk
simp
simp only [Fin.isValue, reduceCtorEq, ↓reduceIte, neg_mul, one_mul, neg_neg, and_true,
and_self, one_apply_eq]
ring_nf
field_simp [hb1, hb2]
ring
· rw [one_apply]
simp [hk]
simp only [Fin.isValue, reduceCtorEq, ↓reduceIte, Sum.inr.injEq, hk, and_true, and_self,
neg_mul, one_mul, neg_neg, zero_add]
rw [if_neg (fun a => hk (id (Eq.symm a))), if_neg (fun a => hk (id (Eq.symm a)))]
· conv_lhs =>
enter [1, 1, 2]
simp [hj']
simp only [Fin.isValue]
conv_lhs =>
enter [2, 1, 1, 2]
simp [hj']
simp
simp only [Fin.isValue]
rw [one_apply]
simp [hj']
· intro b _ hb
@ -125,14 +129,15 @@ where
zero_mul, mul_one]
match k with
| Sum.inl 0 =>
simp
simp only [Fin.isValue, true_and, neg_neg, reduceCtorEq, false_and, ↓reduceIte,
ite_eq_right_iff, neg_eq_zero, mul_eq_zero, inv_eq_zero, or_self_left, and_imp]
intro h1 h2
subst h1 h2
simp at hb
| Sum.inr k =>
simp
simp only [Fin.isValue, reduceCtorEq, false_and, ↓reduceIte, Sum.inr.injEq, neg_neg]
by_cases hb' : b = i
· simp [hb']
· simp only [hb', and_true]
subst hb'
simp [Ne.symm hb]
· simp [hb']
@ -164,9 +169,10 @@ lemma boost_transpose_matrix_eq_self (i : Fin d) {β : } (hβ : |β| < 1) :
rw [← transpose_val, boost_transpose_eq_self]
@[simp]
lemma boost_zero_eq_id (i : Fin d) : boost i (β := 0) (by simp) = 1 := by
lemma boost_zero_eq_id (i : Fin d) : boost i 0 (by simp) = 1 := by
ext j k
simp [boost]
simp only [boost, Fin.isValue, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, sub_zero,
Real.sqrt_one, one_ne_zero, div_self, mul_zero, lorentzGroupIsGroup_one_coe]
match j, k with
| Sum.inl 0, Sum.inl 0 => rfl
| Sum.inl 0, Sum.inr k =>
@ -185,7 +191,7 @@ lemma boost_inverse (i : Fin d) {β : } (hβ : |β| < 1) :
(boost i β hβ)⁻¹ = boost i (-β) (by simpa using hβ) := by
rw [lorentzGroupIsGroup_inv]
ext j k
simp
simp only
rw [minkowskiMatrix.dual_apply]
match j, k with
| Sum.inl 0, Sum.inl 0 =>
@ -193,7 +199,9 @@ lemma boost_inverse (i : Fin d) {β : } (hβ : |β| < 1) :
simp [boost]
| Sum.inl 0, Sum.inr k =>
rw [minkowskiMatrix.inl_0_inl_0, minkowskiMatrix.inr_i_inr_i]
simp [boost]
simp only [boost, Fin.isValue, one_div, neg_mul, reduceCtorEq, and_false, ↓reduceIte,
Sum.inr.injEq, true_and, and_self, false_and, mul_ite, mul_neg, one_mul, mul_zero, mul_one,
even_two, Even.neg_pow, neg_neg, and_true]
split
· simp
· simp
@ -202,7 +210,9 @@ lemma boost_inverse (i : Fin d) {β : } (hβ : |β| < 1) :
simp [boost]
| Sum.inr j, Sum.inr k =>
rw [minkowskiMatrix.inr_i_inr_i, minkowskiMatrix.inr_i_inr_i]
simp [boost]
simp only [boost, Fin.isValue, one_div, neg_mul, reduceCtorEq, and_self, ↓reduceIte,
Sum.inr.injEq, false_and, and_false, mul_ite, one_mul, mul_one, mul_zero, mul_neg, even_two,
Even.neg_pow, neg_neg]
split
· simp
rw [if_pos]