refactor: Lint
This commit is contained in:
parent
277538424a
commit
d12947909d
1 changed files with 35 additions and 25 deletions
|
@ -42,17 +42,18 @@ where
|
|||
simp only [Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
|
||||
Finset.sum_singleton]
|
||||
rw [minkowskiMatrix.inl_0_inl_0]
|
||||
simp
|
||||
simp only [Fin.isValue, and_true, one_div, reduceCtorEq, and_false, ↓reduceIte, neg_mul,
|
||||
mul_ite, mul_neg, mul_one, mul_zero, ite_mul, zero_mul, Sum.inr.injEq]
|
||||
conv_lhs =>
|
||||
enter [2, 2, x]
|
||||
rw [minkowskiMatrix.inr_i_inr_i]
|
||||
simp
|
||||
simp only [Fin.isValue, mul_neg, mul_one, neg_mul, neg_neg]
|
||||
have hb1 : √(1 - β ^ 2) ^ 2 = 1 - β ^ 2 := by
|
||||
refine Real.sq_sqrt ?_
|
||||
simp
|
||||
simp only [sub_nonneg, sq_le_one_iff_abs_le_one]
|
||||
exact le_of_lt hβ
|
||||
have hb2 : 1 - β ^ 2 ≠ 0 := by
|
||||
simp [sub_ne_zero, hb1]
|
||||
simp only [ne_eq, sub_ne_zero]
|
||||
by_contra h
|
||||
have hl : 1 ^ 2 = β ^ 2 := by
|
||||
rw [← h]
|
||||
|
@ -62,20 +63,22 @@ where
|
|||
simp at hβ
|
||||
by_cases hj : j = Sum.inl 0
|
||||
· subst hj
|
||||
simp [minkowskiMatrix.inl_0_inl_0]
|
||||
simp only [Fin.isValue, ↓reduceIte, minkowskiMatrix.inl_0_inl_0, one_mul, true_and,
|
||||
reduceCtorEq, false_and]
|
||||
rw [Finset.sum_eq_single i]
|
||||
· simp
|
||||
by_cases hk : k = Sum.inl 0
|
||||
· subst hk
|
||||
simp
|
||||
simp only [Fin.isValue, ↓reduceIte, one_apply_eq]
|
||||
ring_nf
|
||||
field_simp [hb1, hb2]
|
||||
ring
|
||||
· simp [hk]
|
||||
· simp only [Fin.isValue, hk, ↓reduceIte]
|
||||
by_cases hk' : k = Sum.inr i
|
||||
· simp [hk']
|
||||
· simp only [hk', ↓reduceIte, Fin.isValue, ne_eq, reduceCtorEq, not_false_eq_true,
|
||||
one_apply_ne]
|
||||
ring
|
||||
· simp [hk', hk]
|
||||
· simp only [hk', ↓reduceIte, Fin.isValue]
|
||||
rw [one_apply_ne fun a => hk (id (Eq.symm a))]
|
||||
rw [if_neg (by exact fun a => hk (id (Eq.symm a)))]
|
||||
rw [if_neg (by exact fun a => hk' (id (Eq.symm a)))]
|
||||
|
@ -86,8 +89,7 @@ where
|
|||
· match j with
|
||||
| Sum.inl 0 => simp at hj
|
||||
| Sum.inr j =>
|
||||
rw [minkowskiMatrix.inr_i_inr_i]
|
||||
rw [Finset.sum_eq_single j]
|
||||
rw [minkowskiMatrix.inr_i_inr_i, Finset.sum_eq_single j]
|
||||
· by_cases hj' : j = i
|
||||
· subst hj'
|
||||
conv_lhs =>
|
||||
|
@ -98,25 +100,27 @@ where
|
|||
simp only [Fin.isValue]
|
||||
match k with
|
||||
| Sum.inl 0 =>
|
||||
simp
|
||||
simp only [Fin.isValue, ↓reduceIte, reduceCtorEq, neg_mul, one_mul, neg_neg, and_self,
|
||||
and_true, ne_eq, not_false_eq_true, one_apply_ne]
|
||||
ring
|
||||
| Sum.inr k =>
|
||||
by_cases hk : k = j
|
||||
· subst hk
|
||||
simp
|
||||
simp only [Fin.isValue, reduceCtorEq, ↓reduceIte, neg_mul, one_mul, neg_neg, and_true,
|
||||
and_self, one_apply_eq]
|
||||
ring_nf
|
||||
field_simp [hb1, hb2]
|
||||
ring
|
||||
· rw [one_apply]
|
||||
simp [hk]
|
||||
simp only [Fin.isValue, reduceCtorEq, ↓reduceIte, Sum.inr.injEq, hk, and_true, and_self,
|
||||
neg_mul, one_mul, neg_neg, zero_add]
|
||||
rw [if_neg (fun a => hk (id (Eq.symm a))), if_neg (fun a => hk (id (Eq.symm a)))]
|
||||
· conv_lhs =>
|
||||
enter [1, 1, 2]
|
||||
simp [hj']
|
||||
simp only [Fin.isValue]
|
||||
conv_lhs =>
|
||||
enter [2, 1, 1, 2]
|
||||
simp [hj']
|
||||
simp
|
||||
simp only [Fin.isValue]
|
||||
rw [one_apply]
|
||||
simp [hj']
|
||||
· intro b _ hb
|
||||
|
@ -125,14 +129,15 @@ where
|
|||
zero_mul, mul_one]
|
||||
match k with
|
||||
| Sum.inl 0 =>
|
||||
simp
|
||||
simp only [Fin.isValue, true_and, neg_neg, reduceCtorEq, false_and, ↓reduceIte,
|
||||
ite_eq_right_iff, neg_eq_zero, mul_eq_zero, inv_eq_zero, or_self_left, and_imp]
|
||||
intro h1 h2
|
||||
subst h1 h2
|
||||
simp at hb
|
||||
| Sum.inr k =>
|
||||
simp
|
||||
simp only [Fin.isValue, reduceCtorEq, false_and, ↓reduceIte, Sum.inr.injEq, neg_neg]
|
||||
by_cases hb' : b = i
|
||||
· simp [hb']
|
||||
· simp only [hb', and_true]
|
||||
subst hb'
|
||||
simp [Ne.symm hb]
|
||||
· simp [hb']
|
||||
|
@ -164,9 +169,10 @@ lemma boost_transpose_matrix_eq_self (i : Fin d) {β : ℝ} (hβ : |β| < 1) :
|
|||
rw [← transpose_val, boost_transpose_eq_self]
|
||||
|
||||
@[simp]
|
||||
lemma boost_zero_eq_id (i : Fin d) : boost i (β := 0) (by simp) = 1 := by
|
||||
lemma boost_zero_eq_id (i : Fin d) : boost i 0 (by simp) = 1 := by
|
||||
ext j k
|
||||
simp [boost]
|
||||
simp only [boost, Fin.isValue, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, sub_zero,
|
||||
Real.sqrt_one, one_ne_zero, div_self, mul_zero, lorentzGroupIsGroup_one_coe]
|
||||
match j, k with
|
||||
| Sum.inl 0, Sum.inl 0 => rfl
|
||||
| Sum.inl 0, Sum.inr k =>
|
||||
|
@ -185,7 +191,7 @@ lemma boost_inverse (i : Fin d) {β : ℝ} (hβ : |β| < 1) :
|
|||
(boost i β hβ)⁻¹ = boost i (-β) (by simpa using hβ) := by
|
||||
rw [lorentzGroupIsGroup_inv]
|
||||
ext j k
|
||||
simp
|
||||
simp only
|
||||
rw [minkowskiMatrix.dual_apply]
|
||||
match j, k with
|
||||
| Sum.inl 0, Sum.inl 0 =>
|
||||
|
@ -193,7 +199,9 @@ lemma boost_inverse (i : Fin d) {β : ℝ} (hβ : |β| < 1) :
|
|||
simp [boost]
|
||||
| Sum.inl 0, Sum.inr k =>
|
||||
rw [minkowskiMatrix.inl_0_inl_0, minkowskiMatrix.inr_i_inr_i]
|
||||
simp [boost]
|
||||
simp only [boost, Fin.isValue, one_div, neg_mul, reduceCtorEq, and_false, ↓reduceIte,
|
||||
Sum.inr.injEq, true_and, and_self, false_and, mul_ite, mul_neg, one_mul, mul_zero, mul_one,
|
||||
even_two, Even.neg_pow, neg_neg, and_true]
|
||||
split
|
||||
· simp
|
||||
· simp
|
||||
|
@ -202,7 +210,9 @@ lemma boost_inverse (i : Fin d) {β : ℝ} (hβ : |β| < 1) :
|
|||
simp [boost]
|
||||
| Sum.inr j, Sum.inr k =>
|
||||
rw [minkowskiMatrix.inr_i_inr_i, minkowskiMatrix.inr_i_inr_i]
|
||||
simp [boost]
|
||||
simp only [boost, Fin.isValue, one_div, neg_mul, reduceCtorEq, and_self, ↓reduceIte,
|
||||
Sum.inr.injEq, false_and, and_false, mul_ite, one_mul, mul_one, mul_zero, mul_neg, even_two,
|
||||
Even.neg_pow, neg_neg]
|
||||
split
|
||||
· simp
|
||||
rw [if_pos]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue