refactor: Update operator map

This commit is contained in:
jstoobysmith 2024-12-20 14:05:27 +00:00
parent da595e8ad2
commit d28b673057

View file

@ -16,7 +16,9 @@ noncomputable section
open FieldStatistic
/-- A map from the free algebra of fields `FreeAlgebra I` to an algebra `A`, to be
variable {𝓕 : Type}
/-- A map from the free algebra of fields `FreeAlgebra 𝓕` to an algebra `A`, to be
thought of as the operator algebra is said to be an operator map if
all super commutors of fields land in the center of `A`,
if two fields are of a different grade then their super commutor lands on zero,
@ -25,22 +27,22 @@ open FieldStatistic
This can be thought as as a condtion on the operator algebra `A` as much as it can
on `F`. -/
class OperatorMap {A : Type} [Semiring A] [Algebra A]
(q : I → FieldStatistic) (le1 : I → I → Prop)
[DecidableRel le1] (F : FreeAlgebra I →ₐ[] A) : Prop where
(q : 𝓕 → FieldStatistic) (le : 𝓕𝓕 → Prop)
[DecidableRel le] (F : FreeAlgebra 𝓕 →ₐ[] A) : Prop where
superCommute_mem_center : ∀ i j, F (superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j)) ∈
Subalgebra.center A
superCommute_diff_grade_zero : ∀ i j, q i ≠ q j →
F (superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j)) = 0
superCommute_ordered_zero : ∀ i j, ∀ a b,
F (koszulOrder q le1 (a * superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j) * b)) = 0
F (koszulOrder q le (a * superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j) * b)) = 0
namespace OperatorMap
variable {I: Type} {A : Type} [Semiring A] [Algebra A]
{q : I → FieldStatistic} {le1 : I → I → Prop}
[DecidableRel le1] (F : FreeAlgebra I →ₐ[] A)
variable {A : Type} [Semiring A] [Algebra A]
{q : 𝓕 → FieldStatistic} {le : 𝓕𝓕 → Prop}
[DecidableRel le] (F : FreeAlgebra 𝓕 →ₐ[] A)
lemma superCommute_ofList_singleton_ι_center [OperatorMap q le1 F] (i j :I) :
lemma superCommute_ofList_singleton_ι_center [OperatorMap q le F] (i j : 𝓕) :
F (superCommute q (ofList [i] xa) (FreeAlgebra.ι j)) ∈ Subalgebra.center A := by
have h1 : F (superCommute q (ofList [i] xa) (FreeAlgebra.ι j)) =
xa • F (superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j)) := by
@ -51,22 +53,22 @@ lemma superCommute_ofList_singleton_ι_center [OperatorMap q le1 F] (i j :I) :
rfl
rw [h1]
refine Subalgebra.smul_mem (Subalgebra.center A) ?_ xa
exact superCommute_mem_center (le1 := le1) i j
exact superCommute_mem_center (le := le) i j
end OperatorMap
lemma superCommuteSplit_operatorMap {I : Type} (q : I → FieldStatistic)
(le1 : I → I → Prop) [DecidableRel le1]
(lb : List I) (xa xb : ) (n : )
(hn : n < lb.length) {A : Type} [Semiring A] [Algebra A] (f : FreeAlgebra I →ₐ[] A)
[OperatorMap q le1 f] (i : I) :
variable {𝓕 : Type} (q : 𝓕 → FieldStatistic) (le : 𝓕𝓕 → Prop) [DecidableRel le]
lemma superCommuteSplit_operatorMap (lb : List 𝓕) (xa xb : ) (n : )
(hn : n < lb.length) {A : Type} [Semiring A] [Algebra A] (f : FreeAlgebra 𝓕 →ₐ[] A)
[OperatorMap q le f] (i : 𝓕) :
f (superCommuteSplit q [i] lb xa xb n hn) =
f (superCommute q (ofList [i] xa) (FreeAlgebra.ι (lb.get ⟨n, hn⟩)))
* (superCommuteCoef q [i] (List.take n lb) •
f (ofList (List.eraseIdx lb n) xb)) := by
have hn : f ((superCommute q) (ofList [i] xa) (FreeAlgebra.ι (lb.get ⟨n, hn⟩))) ∈
Subalgebra.center A :=
OperatorMap.superCommute_ofList_singleton_ι_center (le1 := le1) f i (lb.get ⟨n, hn⟩)
OperatorMap.superCommute_ofList_singleton_ι_center (le := le) f i (lb.get ⟨n, hn⟩)
rw [Subalgebra.mem_center_iff] at hn
rw [superCommuteSplit, map_mul, map_mul, map_smul, hn, mul_assoc, smul_mul_assoc,
← map_mul, ← ofList_pair]
@ -74,12 +76,12 @@ lemma superCommuteSplit_operatorMap {I : Type} (q : I → FieldStatistic)
· exact Eq.symm (List.eraseIdx_eq_take_drop_succ lb n)
· exact one_mul xb
lemma superCommuteLiftSplit_operatorMap {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → FieldStatistic) (c : (Σ i, f i)) (r : List I) (x y : ) (n : )
lemma superCommuteLiftSplit_operatorMap {f : 𝓕 → Type} [∀ i, Fintype (f i)]
(c : (Σ i, f i)) (r : List 𝓕) (x y : ) (n : )
(hn : n < r.length)
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
(le : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le]
{A : Type} [Semiring A] [Algebra A] (F : FreeAlgebra (Σ i, f i) →ₐ[] A)
[OperatorMap (fun i => q i.1) le1 F] :
[OperatorMap (fun i => q i.1) le F] :
F (superCommuteLiftSplit q [c] r x y n hn) = superCommuteLiftCoef q [c] (List.take n r) •
(F (superCommute (fun i => q i.1) (ofList [c] x)
(sumFiber f (FreeAlgebra.ι (r.get ⟨n, hn⟩))))
@ -94,7 +96,7 @@ lemma superCommuteLiftSplit_operatorMap {I : Type} {f : I → Type} [∀ i, Fint
rw [map_sum, map_sum]
refine Subalgebra.sum_mem _ ?_
intro n
exact fun a => OperatorMap.superCommute_ofList_singleton_ι_center (le1 := le1) F c _
exact fun a => OperatorMap.superCommute_ofList_singleton_ι_center (le := le) F c _
rw [Subalgebra.mem_center_iff] at h1
rw [h1, mul_assoc, ← map_mul]
congr
@ -104,30 +106,27 @@ lemma superCommuteLiftSplit_operatorMap {I : Type} {f : I → Type} [∀ i, Fint
congr
exact Eq.symm (List.eraseIdx_eq_take_drop_succ r n)
lemma superCommute_koszulOrder_le_ofList {I : Type}
(q : I → FieldStatistic) (r : List I) (x : )
(le1 :I → I → Prop) [DecidableRel le1] [IsTotal I le1] [IsTrans I le1]
(i : I)
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra I →ₐ A) [OperatorMap q le1 F] :
F ((superCommute q (FreeAlgebra.ι i) (koszulOrder q le1 (ofList r x)))) =
lemma superCommute_koszulOrder_le_ofList [IsTotal 𝓕 le] [IsTrans 𝓕 le] (r : List 𝓕) (x : )
(i : 𝓕) {A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra 𝓕 →ₐ A) [OperatorMap q le F] :
F ((superCommute q (FreeAlgebra.ι i) (koszulOrder q le (ofList r x)))) =
∑ n : Fin r.length, (superCommuteCoef q [r.get n] (r.take n)) •
(F (((superCommute q) (ofList [i] 1)) (FreeAlgebra.ι (r.get n))) *
F ((koszulOrder q le1) (ofList (r.eraseIdx ↑n) x))) := by
F ((koszulOrder q le) (ofList (r.eraseIdx ↑n) x))) := by
rw [koszulOrder_ofList, map_smul, map_smul, ← ofList_singleton, superCommute_ofList_sum]
rw [map_sum, ← (HepLean.List.insertionSortEquiv le1 r).sum_comp]
rw [map_sum, ← (HepLean.List.insertionSortEquiv le r).sum_comp]
conv_lhs =>
enter [2, 2]
intro n
rw [superCommuteSplit_operatorMap (le1 := le1)]
rw [superCommuteSplit_operatorMap (le := le)]
enter [1, 2, 2, 2]
change ((List.insertionSort le1 r).get ∘ (HepLean.List.insertionSortEquiv le1 r)) n
change ((List.insertionSort le r).get ∘ (HepLean.List.insertionSortEquiv le r)) n
rw [HepLean.List.insertionSort_get_comp_insertionSortEquiv]
conv_lhs =>
enter [2, 2]
intro n
rw [HepLean.List.eraseIdx_insertionSort_fin le1 r n]
rw [ofList_insertionSort_eq_koszulOrder q le1]
rw [HepLean.List.eraseIdx_insertionSort_fin le r n]
rw [ofList_insertionSort_eq_koszulOrder q le]
rw [Finset.smul_sum]
conv_lhs =>
rhs
@ -136,7 +135,7 @@ lemma superCommute_koszulOrder_le_ofList {I : Type}
congr
funext n
by_cases hq : q i ≠ q (r.get n)
· have hn := OperatorMap.superCommute_diff_grade_zero (q := q) (F := F) le1 i (r.get n) hq
· have hn := OperatorMap.superCommute_diff_grade_zero (q := q) (F := F) le i (r.get n) hq
conv_lhs =>
enter [2, 1]
rw [ofList_singleton, hn]
@ -145,18 +144,16 @@ lemma superCommute_koszulOrder_le_ofList {I : Type}
rw [ofList_singleton, hn]
simp
· congr 1
trans staticWickCoef q le1 r i n
trans staticWickCoef q le r i n
· rw [staticWickCoef, mul_assoc]
refine staticWickCoef_eq_get q le1 r i n ?_
refine staticWickCoef_eq_get q le r i n ?_
simpa using hq
lemma koszulOrder_of_le_all_ofList {I : Type}
(q : I → FieldStatistic) (r : List I) (x : ) (le1 : I → I → Prop) [DecidableRel le1]
(i : I)
lemma koszulOrder_of_le_all_ofList (r : List 𝓕) (x : ) (i : 𝓕)
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra I →ₐ A) [OperatorMap q le1 F] :
F (koszulOrder q le1 (ofList r x * FreeAlgebra.ι i))
= superCommuteCoef q [i] r • F (koszulOrder q le1 (FreeAlgebra.ι i * ofList r x)) := by
(F : FreeAlgebra 𝓕 →ₐ A) [OperatorMap q le F] :
F (koszulOrder q le (ofList r x * FreeAlgebra.ι i))
= superCommuteCoef q [i] r • F (koszulOrder q le (FreeAlgebra.ι i * ofList r x)) := by
conv_lhs =>
enter [2, 2]
rw [← ofList_singleton]
@ -184,14 +181,13 @@ lemma koszulOrder_of_le_all_ofList {I : Type}
simp only [smul_zero, Finset.sum_const_zero, add_zero]
rw [ofList_singleton]
lemma le_all_mul_koszulOrder_ofList {I : Type}
(q : I → FieldStatistic) (r : List I) (x : ) (le1 : I → I→ Prop) [DecidableRel le1]
(i : I) (hi : ∀ (j : I), le1 j i)
lemma le_all_mul_koszulOrder_ofList (r : List 𝓕) (x : )
(i : 𝓕) (hi : ∀ (j : 𝓕), le j i)
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra I →ₐ A) [OperatorMap q le1 F] :
F (FreeAlgebra.ι i * koszulOrder q le1 (ofList r x)) =
F ((koszulOrder q le1) (FreeAlgebra.ι i * ofList r x)) +
F (((superCommute q) (ofList [i] 1)) ((koszulOrder q le1) (ofList r x))) := by
(F : FreeAlgebra 𝓕 →ₐ A) [OperatorMap q le F] :
F (FreeAlgebra.ι i * koszulOrder q le (ofList r x)) =
F ((koszulOrder q le) (FreeAlgebra.ι i * ofList r x)) +
F (((superCommute q) (ofList [i] 1)) ((koszulOrder q le) (ofList r x))) := by
rw [koszulOrder_ofList, Algebra.mul_smul_comm, map_smul, ← ofList_singleton,
ofList_ofList_superCommute q, map_add, smul_add, ← map_smul]
conv_lhs =>
@ -201,20 +197,19 @@ lemma le_all_mul_koszulOrder_ofList {I : Type}
rw [koszulOrder_mul_ge, map_smul]
congr
· rw [koszulOrder_of_le_all_ofList]
rw [superCommuteCoef_perm_snd q [i] (List.insertionSort le1 r) r
(List.perm_insertionSort le1 r)]
rw [superCommuteCoef_perm_snd q [i] (List.insertionSort le r) r
(List.perm_insertionSort le r)]
rw [smul_smul]
rw [superCommuteCoef_mul_self]
simp [ofList_singleton]
· rw [map_smul, map_smul]
· exact fun j => hi j
/-- In the expansions of `F (FreeAlgebra.ι i * koszulOrder le1 q (ofList r x))`
the ter multiplying `F ((koszulOrder le1 q) (ofList (optionEraseZ r i n) x))`. -/
def superCommuteCenterOrder {I : Type}
(q : I → FieldStatistic) (r : List I) (i : I)
/-- In the expansions of `F (FreeAlgebra.ι i * koszulOrder q le (ofList r x))`
the ter multiplying `F ((koszulOrder q le) (ofList (optionEraseZ r i n) x))`. -/
def superCommuteCenterOrder (r : List 𝓕) (i : 𝓕)
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra I →ₐ[] A)
(F : FreeAlgebra 𝓕 →ₐ[] A)
(n : Option (Fin r.length)) : A :=
match n with
| none => 1
@ -222,24 +217,21 @@ def superCommuteCenterOrder {I : Type}
(FreeAlgebra.ι (r.get n)))
@[simp]
lemma superCommuteCenterOrder_none {I : Type}
(q : I → FieldStatistic) (r : List I) (i : I)
lemma superCommuteCenterOrder_none (r : List 𝓕) (i : 𝓕)
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra I →ₐ[] A) :
(F : FreeAlgebra 𝓕 →ₐ[] A) :
superCommuteCenterOrder q r i F none = 1 := by
simp [superCommuteCenterOrder]
open HepLean.List
lemma le_all_mul_koszulOrder_ofList_expand {I : Type}
(q : I → FieldStatistic) (r : List I) (x : ) (le1 : I → I→ Prop) [DecidableRel le1]
[IsTotal I le1] [IsTrans I le1]
(i : I) (hi : ∀ (j : I), le1 j i)
lemma le_all_mul_koszulOrder_ofList_expand [IsTotal 𝓕 le] [IsTrans 𝓕 le] (r : List 𝓕) (x : )
(i : 𝓕) (hi : ∀ (j : 𝓕), le j i)
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra I →ₐ[] A) [OperatorMap q le1 F] :
F (FreeAlgebra.ι i * koszulOrder q le1 (ofList r x)) =
(F : FreeAlgebra 𝓕 →ₐ[] A) [OperatorMap q le F] :
F (FreeAlgebra.ι i * koszulOrder q le (ofList r x)) =
∑ n, superCommuteCenterOrder q r i F n *
F ((koszulOrder q le1) (ofList (optionEraseZ r i n) x)) := by
F ((koszulOrder q le) (ofList (optionEraseZ r i n) x)) := by
rw [le_all_mul_koszulOrder_ofList]
conv_lhs =>
rhs
@ -255,18 +247,18 @@ lemma le_all_mul_koszulOrder_ofList_expand {I : Type}
rfl
exact fun j => hi j
lemma le_all_mul_koszulOrder_ofListLift_expand {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → FieldStatistic) (r : List I) (x : )
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
[IsTotal (Σ i, f i) le1] [IsTrans (Σ i, f i) le1]
(i : (Σ i, f i)) (hi : ∀ (j : (Σ i, f i)), le1 j i)
lemma le_all_mul_koszulOrder_ofListLift_expand {f : 𝓕 → Type} [∀ i, Fintype (f i)]
(r : List 𝓕) (x : )
(le : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le]
[IsTotal (Σ i, f i) le] [IsTrans (Σ i, f i) le]
(i : (Σ i, f i)) (hi : ∀ (j : (Σ i, f i)), le j i)
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F] :
F (ofList [i] 1 * koszulOrder (fun i => q i.1) le1 (ofListLift f r x)) =
F ((koszulOrder (fun i => q i.fst) le1) (ofList [i] 1 * ofListLift f r x)) +
(F : FreeAlgebra (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le F] :
F (ofList [i] 1 * koszulOrder (fun i => q i.1) le (ofListLift f r x)) =
F ((koszulOrder (fun i => q i.fst) le) (ofList [i] 1 * ofListLift f r x)) +
∑ n : (Fin r.length), superCommuteCoef q [r.get n] (List.take (↑n) r) •
F (((superCommute fun i => q i.fst) (ofList [i] 1)) (ofListLift f [r.get n] 1)) *
F ((koszulOrder (fun i => q i.fst) le1) (ofListLift f (r.eraseIdx ↑n) x)) := by
F ((koszulOrder (fun i => q i.fst) le) (ofListLift f (r.eraseIdx ↑n) x)) := by
match r with
| [] =>
simp only [map_mul, List.length_nil, Finset.univ_eq_empty, List.get_eq_getElem, List.take_nil,
@ -332,7 +324,6 @@ lemma le_all_mul_koszulOrder_ofListLift_expand {I : Type} {f : I → Type} [∀
rhs
intro a0
rw [← Finset.mul_sum]
conv_lhs =>
rhs
intro a0