From d2ce55ddd0686e4921468d4e9900ace562ac8271 Mon Sep 17 00:00:00 2001 From: jstoobysmith <72603918+jstoobysmith@users.noreply.github.com> Date: Thu, 13 Feb 2025 09:48:19 +0000 Subject: [PATCH] docs: Fix typos in docs --- .../StandardParameters.lean | 6 +++--- HepLean/Lorentz/Group/Orthochronous.lean | 6 +++--- .../PerturbationTheory/FieldOpAlgebra/Basic.lean | 2 +- .../FieldOpAlgebra/NormalOrder/Basic.lean | 4 ++-- .../FieldOpAlgebra/NormalOrder/Lemmas.lean | 2 +- .../NormalOrder/WickContractions.lean | 4 ++-- .../FieldOpAlgebra/StaticWickTerm.lean | 4 ++-- .../FieldOpAlgebra/StaticWickTheorem.lean | 4 ++-- .../FieldOpAlgebra/SuperCommute.lean | 2 +- .../FieldOpAlgebra/TimeOrder.lean | 4 ++-- .../FieldOpAlgebra/WickTerm.lean | 14 +++++++------- .../FieldOpAlgebra/WicksTheorem.lean | 2 +- .../FieldOpAlgebra/WicksTheoremNormal.lean | 4 ++-- .../FieldSpecification/Basic.lean | 6 +++--- .../FieldSpecification/CrAnFieldOp.lean | 6 +++--- .../FieldSpecification/NormalOrder.lean | 2 +- .../FieldSpecification/TimeOrder.lean | 6 +++--- .../PerturbationTheory/WickContraction/Basic.lean | 6 +++--- .../WickContraction/InsertAndContract.lean | 4 ++-- .../WickContraction/Sign/InsertNone.lean | 2 +- .../WickContraction/StaticContract.lean | 4 ++-- .../WickContraction/TimeCond.lean | 8 ++++---- .../WickContraction/TimeContract.lean | 8 ++++---- .../WickContraction/UncontractedList.lean | 2 +- HepLean/StandardModel/HiggsBoson/Potential.lean | 4 ++-- HepLean/Tensors/Tree/Elab.lean | 4 ++-- scripts/MetaPrograms/notes.lean | 10 +++++++--- 27 files changed, 67 insertions(+), 63 deletions(-) diff --git a/HepLean/FlavorPhysics/CKMMatrix/StandardParameterization/StandardParameters.lean b/HepLean/FlavorPhysics/CKMMatrix/StandardParameterization/StandardParameters.lean index ef7be79..e4549d0 100644 --- a/HepLean/FlavorPhysics/CKMMatrix/StandardParameterization/StandardParameters.lean +++ b/HepLean/FlavorPhysics/CKMMatrix/StandardParameterization/StandardParameters.lean @@ -83,7 +83,7 @@ lemma S₂₃_nonneg (V : Quotient CKMMatrixSetoid) : 0 ≤ S₂₃ V := by · rw [S₂₃, if_neg ha, @div_nonneg_iff] exact .inl (.intro (VAbs_ge_zero 1 2 V) (Real.sqrt_nonneg (VudAbs V ^ 2 + VusAbs V ^ 2))) -/-- For a CKM matrix `sin θ₁₂` is less then or equal to 1. -/ +/-- For a CKM matrix `sin θ₁₂` is less than or equal to 1. -/ lemma S₁₂_leq_one (V : Quotient CKMMatrixSetoid) : S₁₂ V ≤ 1 := by rw [S₁₂, @div_le_one_iff] by_cases h1 : √(VudAbs V ^ 2 + VusAbs V ^ 2) = 0 @@ -99,11 +99,11 @@ lemma S₁₂_leq_one (V : Quotient CKMMatrixSetoid) : S₁₂ V ≤ 1 := by simp only [Fin.isValue, le_add_iff_nonneg_left] exact sq_nonneg (VAbs 0 0 V) -/-- For a CKM matrix `sin θ₁₃` is less then or equal to 1. -/ +/-- For a CKM matrix `sin θ₁₃` is less than or equal to 1. -/ lemma S₁₃_leq_one (V : Quotient CKMMatrixSetoid) : S₁₃ V ≤ 1 := VAbs_leq_one 0 2 V -/-- For a CKM matrix `sin θ₂₃` is less then or equal to 1. -/ +/-- For a CKM matrix `sin θ₂₃` is less than or equal to 1. -/ lemma S₂₃_leq_one (V : Quotient CKMMatrixSetoid) : S₂₃ V ≤ 1 := by by_cases ha : VubAbs V = 1 · rw [S₂₃, if_pos ha] diff --git a/HepLean/Lorentz/Group/Orthochronous.lean b/HepLean/Lorentz/Group/Orthochronous.lean index 528a123..16a2c78 100644 --- a/HepLean/Lorentz/Group/Orthochronous.lean +++ b/HepLean/Lorentz/Group/Orthochronous.lean @@ -47,7 +47,7 @@ lemma IsOrthochronous_iff_ge_one : rw [IsOrthochronous_iff_futurePointing, NormOne.FuturePointing.mem_iff_inl_one_le_inl, toNormOne_inl] -/-- A Lorentz transformation is not orthochronous if and only if its `0 0` element is less then +/-- A Lorentz transformation is not orthochronous if and only if its `0 0` element is less than or equal to minus one. -/ lemma not_orthochronous_iff_le_neg_one : ¬ IsOrthochronous Λ ↔ Λ.1 (Sum.inl 0) (Sum.inl 0) ≤ -1 := by @@ -65,8 +65,8 @@ def timeCompCont : C(LorentzGroup d, ℝ) := ⟨fun Λ => Λ.1 (Sum.inl 0) (Sum. Continuous.matrix_elem (continuous_iff_le_induced.mpr fun _ a => a) (Sum.inl 0) (Sum.inl 0)⟩ /-- An auxiliary function used in the definition of `orthchroMapReal`. - This function takes all elements of `ℝ` less then `-1` to `-1`, - all elements of `R` greater then `1` to `1` and preserves all other elements. -/ + This function takes all elements of `ℝ` less than `-1` to `-1`, + all elements of `R` greater than `1` to `1` and preserves all other elements. -/ def stepFunction : ℝ → ℝ := fun t => if t ≤ -1 then -1 else if 1 ≤ t then 1 else t diff --git a/HepLean/PerturbationTheory/FieldOpAlgebra/Basic.lean b/HepLean/PerturbationTheory/FieldOpAlgebra/Basic.lean index 7779877..d700622 100644 --- a/HepLean/PerturbationTheory/FieldOpAlgebra/Basic.lean +++ b/HepLean/PerturbationTheory/FieldOpAlgebra/Basic.lean @@ -42,7 +42,7 @@ def fieldOpIdealSet : Set (FieldOpFreeAlgebra 𝓕) := This corresponds to the condition that two operators with different statistics always super-commute. In other words, fermions and bosons always super-commute. - `[ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca`. This corresponds to the condition, - when combined with the conditions above, that the super-commutator is in the center of the + when combined with the conditions above, that the super-commutator is in the center of the algebra. -/ abbrev FieldOpAlgebra : Type := (TwoSidedIdeal.span 𝓕.fieldOpIdealSet).ringCon.Quotient diff --git a/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Basic.lean b/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Basic.lean index 7b7fbf9..075df50 100644 --- a/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Basic.lean +++ b/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Basic.lean @@ -223,9 +223,9 @@ lemma ι_normalOrderF_eq_of_equiv (a b : 𝓕.FieldOpFreeAlgebra) (h : a ≈ b) `FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕` - defined as the decent of `ι ∘ₗ normalOrderF : FieldOpFreeAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕` + defined as the descent of `ι ∘ₗ normalOrderF : FieldOpFreeAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕` from `FieldOpFreeAlgebra 𝓕` to `FieldOpAlgebra 𝓕`. - This decent exists because `ι ∘ₗ normalOrderF` is well-defined on equivalence classes. + This descent exists because `ι ∘ₗ normalOrderF` is well-defined on equivalence classes. The notation `𝓝(a)` is used for `normalOrder a` for `a` an element of `FieldOpAlgebra 𝓕`. -/ noncomputable def normalOrder : FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕 where diff --git a/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Lemmas.lean b/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Lemmas.lean index 1650212..cee072a 100644 --- a/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Lemmas.lean +++ b/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Lemmas.lean @@ -350,7 +350,7 @@ then `φ * 𝓝(φ₀φ₁…φₙ)` is equal to `𝓝(φφ₀φ₁…φₙ) + ∑ i, (𝓢(φ,φ₀φ₁…φᵢ₋₁) • [anPart φ, φᵢ]ₛ) * 𝓝(φ₀…φᵢ₋₁φᵢ₊₁…φₙ)`. -The proof of ultimately goes as follows: +The proof ultimately goes as follows: - `ofFieldOp_eq_crPart_add_anPart` is used to split `φ` into its creation and annihilation parts. - The following relation is then used diff --git a/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/WickContractions.lean b/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/WickContractions.lean index d6f531c..35b5e81 100644 --- a/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/WickContractions.lean +++ b/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/WickContractions.lean @@ -32,7 +32,7 @@ variable {𝓕 : FieldSpecification} where `s` is the exchange sign for `φ` and the uncontracted fields in `φ₀…φᵢ₋₁`. - The prove of this result ultimately a consequence of `normalOrder_superCommute_eq_zero`. + The proof of this result ultimately is a consequence of `normalOrder_superCommute_eq_zero`. -/ lemma normalOrder_uncontracted_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (i : Fin φs.length.succ) (φsΛ : WickContraction φs.length) : @@ -104,7 +104,7 @@ lemma normalOrder_uncontracted_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp `𝓝([φsΛ ↩Λ φ i (some k)]ᵘᶜ)` is equal to the normal ordering of `[φsΛ]ᵘᶜ` with the `𝓕.FieldOp` corresponding to `k` removed. - The proof of this result ultimately a consequence of definitions. + The proof of this result ultimately is a consequence of definitions. -/ lemma normalOrder_uncontracted_some (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (i : Fin φs.length.succ) (φsΛ : WickContraction φs.length) (k : φsΛ.uncontracted) : diff --git a/HepLean/PerturbationTheory/FieldOpAlgebra/StaticWickTerm.lean b/HepLean/PerturbationTheory/FieldOpAlgebra/StaticWickTerm.lean index 599e9fd..746baa4 100644 --- a/HepLean/PerturbationTheory/FieldOpAlgebra/StaticWickTerm.lean +++ b/HepLean/PerturbationTheory/FieldOpAlgebra/StaticWickTerm.lean @@ -27,7 +27,7 @@ noncomputable section `φsΛ.sign • φsΛ.staticContract * 𝓝([φsΛ]ᵘᶜ)`. - This is term which appears in the static version Wick's theorem. -/ + This is a term which appears in the static version Wick's theorem. -/ def staticWickTerm {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) : 𝓕.FieldOpAlgebra := φsΛ.sign • φsΛ.staticContract * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ) @@ -120,7 +120,7 @@ holds where the sum is over all `k` in `Option φsΛ.uncontracted`, so `k` is either `none` or `some k`. -The proof of proceeds as follows: +The proof proceeds as follows: - `ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum` is used to expand `φ 𝓝([φsΛ]ᵘᶜ)` as a sum over `k` in `Option φsΛ.uncontracted` of terms involving `[anPart φ, φs[k]]ₛ`. - Then `staticWickTerm_insert_zero_none` and `staticWickTerm_insert_zero_some` are diff --git a/HepLean/PerturbationTheory/FieldOpAlgebra/StaticWickTheorem.lean b/HepLean/PerturbationTheory/FieldOpAlgebra/StaticWickTheorem.lean index 7b060b9..f15ef0a 100644 --- a/HepLean/PerturbationTheory/FieldOpAlgebra/StaticWickTheorem.lean +++ b/HepLean/PerturbationTheory/FieldOpAlgebra/StaticWickTheorem.lean @@ -32,7 +32,7 @@ The proof is via induction on `φs`. The inductive step works as follows: For the LHS: -1. The proof considers `φ₀…φₙ` as `φ₀(φ₁…φₙ)` and use the induction hypothesis on `φ₁…φₙ`. +1. The proof considers `φ₀…φₙ` as `φ₀(φ₁…φₙ)` and uses the induction hypothesis on `φ₁…φₙ`. 2. This gives terms of the form `φ * φsΛ.staticWickTerm` on which `mul_staticWickTerm_eq_sum` is used where `φsΛ` is a Wick contraction of `φ₁…φₙ`, to rewrite terms as a sum over optional uncontracted elements of `φsΛ` @@ -45,7 +45,7 @@ For the RHS: is split via `insertLift_sum` into a sum over Wick contractions `φsΛ` of `φ₁…φₙ` and sum over optional uncontracted elements of `φsΛ`. -Both side now are sums over the same thing and their terms equate by the nature of the +Both sides are now sums over the same thing and their terms equate by the nature of the lemmas used. -/ diff --git a/HepLean/PerturbationTheory/FieldOpAlgebra/SuperCommute.lean b/HepLean/PerturbationTheory/FieldOpAlgebra/SuperCommute.lean index e9e4522..467190f 100644 --- a/HepLean/PerturbationTheory/FieldOpAlgebra/SuperCommute.lean +++ b/HepLean/PerturbationTheory/FieldOpAlgebra/SuperCommute.lean @@ -92,7 +92,7 @@ lemma superCommuteRight_eq_of_equiv (a1 a2 : 𝓕.FieldOpFreeAlgebra) (h : a1 `FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕` - defined as the decent of `ι ∘ superCommuteF` in both arguments. + defined as the descent of `ι ∘ superCommuteF` in both arguments. In particular for `φs` and `φs'` lists of `𝓕.CrAnFieldOp` in `FieldOpAlgebra 𝓕` the following relation holds: diff --git a/HepLean/PerturbationTheory/FieldOpAlgebra/TimeOrder.lean b/HepLean/PerturbationTheory/FieldOpAlgebra/TimeOrder.lean index a5ab710..85b65b1 100644 --- a/HepLean/PerturbationTheory/FieldOpAlgebra/TimeOrder.lean +++ b/HepLean/PerturbationTheory/FieldOpAlgebra/TimeOrder.lean @@ -371,9 +371,9 @@ lemma ι_timeOrderF_eq_of_equiv (a b : 𝓕.FieldOpFreeAlgebra) (h : a ≈ b) : `FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕` -defined as the decent of `ι ∘ₗ timeOrderF : FieldOpFreeAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕` from +defined as the descent of `ι ∘ₗ timeOrderF : FieldOpFreeAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕` from `FieldOpFreeAlgebra 𝓕` to `FieldOpAlgebra 𝓕`. -This decent exists because `ι ∘ₗ timeOrderF` is well-defined on equivalence classes. +This descent exists because `ι ∘ₗ timeOrderF` is well-defined on equivalence classes. The notation `𝓣(a)` is used for `timeOrder a`. -/ noncomputable def timeOrder : FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕 where diff --git a/HepLean/PerturbationTheory/FieldOpAlgebra/WickTerm.lean b/HepLean/PerturbationTheory/FieldOpAlgebra/WickTerm.lean index 4f4f85e..56054b4 100644 --- a/HepLean/PerturbationTheory/FieldOpAlgebra/WickTerm.lean +++ b/HepLean/PerturbationTheory/FieldOpAlgebra/WickTerm.lean @@ -29,7 +29,7 @@ noncomputable section `φsΛ.sign • φsΛ.timeContract * 𝓝([φsΛ]ᵘᶜ)`. - This is term which appears in the Wick's theorem. -/ + This is a term which appears in the Wick's theorem. -/ def wickTerm {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) : 𝓕.FieldOpAlgebra := φsΛ.sign • φsΛ.timeContract * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ) @@ -95,10 +95,10 @@ lemma wickTerm_insert_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) /-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of `𝓕.FieldOp`, `i ≤ φs.length` and a `k` in `φsΛ.uncontracted`, - such that all `𝓕.FieldOp` in `φ₀…φᵢ₋₁` have time strictly less then `φ` and - `φ` has a time greater then or equal to all `FieldOp` in `φ₀…φₙ`, then + such that all `𝓕.FieldOp` in `φ₀…φᵢ₋₁` have time strictly less than `φ` and + `φ` has a time greater than or equal to all `FieldOp` in `φ₀…φₙ`, then `(φsΛ ↩Λ φ i (some k)).staticWickTerm` -is equal the product of +is equal to the product of - the sign `𝓢(φ, φ₀…φᵢ₋₁) ` - the sign `φsΛ.sign` - `φsΛ.timeContract` @@ -177,14 +177,14 @@ lemma wickTerm_insert_some (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) /-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of `𝓕.FieldOp`, and `i ≤ φs.length` - such that all `𝓕.FieldOp` in `φ₀…φᵢ₋₁` have time strictly less then `φ` and - `φ` has a time greater then or equal to all `FieldOp` in `φ₀…φₙ`, then + such that all `𝓕.FieldOp` in `φ₀…φᵢ₋₁` have time strictly less than `φ` and + `φ` has a time greater than or equal to all `FieldOp` in `φ₀…φₙ`, then `φ * φsΛ.wickTerm = 𝓢(φ, φ₀…φᵢ₋₁) • ∑ k, (φsΛ ↩Λ φ i k).wickTerm` where the sum is over all `k` in `Option φsΛ.uncontracted`, so `k` is either `none` or `some k`. -The proof of proceeds as follows: +The proof proceeds as follows: - `ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum` is used to expand `φ 𝓝([φsΛ]ᵘᶜ)` as a sum over `k` in `Option φsΛ.uncontracted` of terms involving `[anPart φ, φs[k]]ₛ`. - Then `wickTerm_insert_none` and `wickTerm_insert_some` are used to equate terms. diff --git a/HepLean/PerturbationTheory/FieldOpAlgebra/WicksTheorem.lean b/HepLean/PerturbationTheory/FieldOpAlgebra/WicksTheorem.lean index 2ca9795..acabd14 100644 --- a/HepLean/PerturbationTheory/FieldOpAlgebra/WicksTheorem.lean +++ b/HepLean/PerturbationTheory/FieldOpAlgebra/WicksTheorem.lean @@ -91,7 +91,7 @@ For the RHS: is split via `insertLift_sum` into a sum over Wick contractions `φsΛ` of `φ₀…φᵢ₋₁φᵢ₊₁φ` and sum over optional uncontracted elements of `φsΛ`. -Both side now are sums over the same thing and their terms equate by the nature of the +Both sides are now sums over the same thing and their terms equate by the nature of the lemmas used. -/ theorem wicks_theorem : (φs : List 𝓕.FieldOp) → 𝓣(ofFieldOpList φs) = diff --git a/HepLean/PerturbationTheory/FieldOpAlgebra/WicksTheoremNormal.lean b/HepLean/PerturbationTheory/FieldOpAlgebra/WicksTheoremNormal.lean index 35a2400..87ef1d3 100644 --- a/HepLean/PerturbationTheory/FieldOpAlgebra/WicksTheoremNormal.lean +++ b/HepLean/PerturbationTheory/FieldOpAlgebra/WicksTheoremNormal.lean @@ -117,9 +117,9 @@ For a list `φs` of `𝓕.FieldOp`, then `𝓣(φs)` is equal to the sum of and the second sum is over all Wick contraction `φssucΛ` of the uncontracted elements of `φsΛ` which do not have any equal time contractions. -The proof of proceeds as follows +The proof proceeds as follows - `wicks_theorem` is used to rewrite `𝓣(φs)` as a sum over all Wick contractions. -- The sum over all Wick contractions is then split additively into two parts using based on having +- The sum over all Wick contractions is then split additively into two parts based on having or not having an equal time contractions. - Using `join`, the sum `∑ φsΛ, _` over Wick contractions which do have equal time contractions is split into two sums `∑ φsΛ, ∑ φsucΛ, _`, the first over non-zero elements diff --git a/HepLean/PerturbationTheory/FieldSpecification/Basic.lean b/HepLean/PerturbationTheory/FieldSpecification/Basic.lean index 7a06fe3..27f8c14 100644 --- a/HepLean/PerturbationTheory/FieldSpecification/Basic.lean +++ b/HepLean/PerturbationTheory/FieldSpecification/Basic.lean @@ -43,7 +43,7 @@ The structure `FieldSpecification` is defined to have the following content: index of the field and its conjugate. - For every field `f` in `Field`, a type `AsymptoticLabel f` whose elements label the different types of incoming asymptotic field operators associated with the - field `f` (this is also matches the types of outgoing asymptotic field operators). + field `f` (this also matches the types of outgoing asymptotic field operators). For example, - For `f` a *real-scalar field*, `AsymptoticLabel f` will have a unique element. - For `f` a *complex-scalar field*, `AsymptoticLabel f` will have two elements, one for the @@ -81,7 +81,7 @@ variable (𝓕 : FieldSpecification) element labelled `outAsymp f e p` corresponding to an outgoing asymptotic field operator of the field `f`, of label `e` (e.g. specifying the spin), and momentum `p`. -As some intuition, if `f` corresponds to a Weyl-fermion field, then +As an example, if `f` corresponds to a Weyl-fermion field, then - For `inAsymp f e p`, `e` would correspond to a spin `s`, and `inAsymp f e p` would, once represented in the operator algebra, be proportional to the creation operator `a(p, s)`. @@ -120,7 +120,7 @@ def fieldOpToField : 𝓕.FieldOp → 𝓕.Field - For `φ` an element of `𝓕.FieldOp`, `𝓕 |>ₛ φ` is `fieldOpStatistic φ`. - For `φs` a list of `𝓕.FieldOp`, `𝓕 |>ₛ φs` is the product of `fieldOpStatistic φ` over the list `φs`. -- For a function `f : Fin n → 𝓕.FieldOp` and a finset `a` of `Fin n`, `𝓕 |>ₛ ⟨f, a⟩` is the +- For a function `f : Fin n → 𝓕.FieldOp` and a finite set `a` of `Fin n`, `𝓕 |>ₛ ⟨f, a⟩` is the product of `fieldOpStatistic (f i)` for all `i ∈ a`. -/ def fieldOpStatistic : 𝓕.FieldOp → FieldStatistic := 𝓕.statistic ∘ 𝓕.fieldOpToField diff --git a/HepLean/PerturbationTheory/FieldSpecification/CrAnFieldOp.lean b/HepLean/PerturbationTheory/FieldSpecification/CrAnFieldOp.lean index 2725b1e..ab84fc1 100644 --- a/HepLean/PerturbationTheory/FieldSpecification/CrAnFieldOp.lean +++ b/HepLean/PerturbationTheory/FieldSpecification/CrAnFieldOp.lean @@ -66,18 +66,18 @@ def fieldOpToCreateAnnihilateTypeCongr : {i j : 𝓕.FieldOp} → i = j → For a field specification `𝓕`, the (sigma) type `𝓕.CrAnFieldOp` corresponds to the type of creation and annihilation parts of field operators. It formally defined to consist of the following elements: -- for each in incoming asymptotic field operator `φ` in `𝓕.FieldOp` an element +- for each incoming asymptotic field operator `φ` in `𝓕.FieldOp` an element written as `⟨φ, ()⟩` in `𝓕.CrAnFieldOp`, corresponding to the creation part of `φ`. Here `φ` has no annihilation part. (Here `()` is the unique element of `Unit`.) - for each position field operator `φ` in `𝓕.FieldOp` an element of `𝓕.CrAnFieldOp` written as `⟨φ, .create⟩`, corresponding to the creation part of `φ`. - for each position field operator `φ` in `𝓕.FieldOp` an element of `𝓕.CrAnFieldOp` written as `⟨φ, .annihilate⟩`, corresponding to the annihilation part of `φ`. -- for each out outgoing asymptotic field operator `φ` in `𝓕.FieldOp` an element +- for each outgoing asymptotic field operator `φ` in `𝓕.FieldOp` an element written as `⟨φ, ()⟩` in `𝓕.CrAnFieldOp`, corresponding to the annihilation part of `φ`. Here `φ` has no creation part. (Here `()` is the unique element of `Unit`.) -As some intuition, if `f` corresponds to a Weyl-fermion field, it would contribute +As an example, if `f` corresponds to a Weyl-fermion field, it would contribute the following elements to `𝓕.CrAnFieldOp` - an element corresponding to incoming asymptotic operators for each spin `s`: `a(p, s)`. - an element corresponding to the creation parts of position operators for each each Lorentz diff --git a/HepLean/PerturbationTheory/FieldSpecification/NormalOrder.lean b/HepLean/PerturbationTheory/FieldSpecification/NormalOrder.lean index 6d382ba..c423c72 100644 --- a/HepLean/PerturbationTheory/FieldSpecification/NormalOrder.lean +++ b/HepLean/PerturbationTheory/FieldSpecification/NormalOrder.lean @@ -20,7 +20,7 @@ variable {𝓕 : FieldSpecification} - `φ₀` is a field creation operator - `φ₁` is a field annihilation operator. - Thus, colloquially `𝓕.normalOrderRel φ₀ φ₁` says the creation operators are 'less then' + Thus, colloquially `𝓕.normalOrderRel φ₀ φ₁` says the creation operators are less than annihilation operators. -/ def normalOrderRel : 𝓕.CrAnFieldOp → 𝓕.CrAnFieldOp → Prop := fun a b => CreateAnnihilate.normalOrder (𝓕 |>ᶜ a) (𝓕 |>ᶜ b) diff --git a/HepLean/PerturbationTheory/FieldSpecification/TimeOrder.lean b/HepLean/PerturbationTheory/FieldSpecification/TimeOrder.lean index 7812797..43fdc46 100644 --- a/HepLean/PerturbationTheory/FieldSpecification/TimeOrder.lean +++ b/HepLean/PerturbationTheory/FieldSpecification/TimeOrder.lean @@ -198,10 +198,10 @@ lemma timeOrderList_eq_maxTimeField_timeOrderList (φ : 𝓕.FieldOp) (φs : Lis - `φ₀` is an *outgoing* asymptotic operator - `φ₁` is an *incoming* asymptotic field operator - `φ₀` and `φ₁` are both position field operators where - the `SpaceTime` point of `φ₀` has a time *greater* then or equal to that of `φ₁`. + the `SpaceTime` point of `φ₀` has a time *greater* than or equal to that of `φ₁`. -Thus, colloquially `𝓕.crAnTimeOrderRel φ₀ φ₁` if `φ₀` has time *greater* then or equal to `φ₁`. -The use of *greater* then rather then *less* then is because on ordering lists of operators +Thus, colloquially `𝓕.crAnTimeOrderRel φ₀ φ₁` if `φ₀` has time *greater* than or equal to `φ₁`. +The use of *greater* than rather then *less* than is because on ordering lists of operators it is needed that the operator with the greatest time is to the left. -/ def crAnTimeOrderRel (a b : 𝓕.CrAnFieldOp) : Prop := 𝓕.timeOrderRel a.1 b.1 diff --git a/HepLean/PerturbationTheory/WickContraction/Basic.lean b/HepLean/PerturbationTheory/WickContraction/Basic.lean index 72ea7d0..6744f4a 100644 --- a/HepLean/PerturbationTheory/WickContraction/Basic.lean +++ b/HepLean/PerturbationTheory/WickContraction/Basic.lean @@ -17,7 +17,7 @@ variable {𝓕 : FieldSpecification} Given a natural number `n`, which will correspond to the number of fields needing contracting, a Wick contraction is a finite set of pairs of `Fin n` (numbers `0`, ..., `n-1`), such that no -element of `Fin n` occurs in more then one pair. The pairs are the positions of fields we +element of `Fin n` occurs in more than one pair. The pairs are the positions of fields we 'contract' together. -/ def WickContraction (n : ℕ) : Type := @@ -520,8 +520,8 @@ lemma prod_finset_eq_mul_fst_snd (c : WickContraction n) (a : c.1) /-- For a field specification `𝓕`, `φs` a list of `𝓕.FieldOp` and a Wick contraction `φsΛ` of `φs`, the Wick contraction `φsΛ` is said to be `GradingCompliant` if for every pair in `φsΛ` the contracted fields are either both `fermionic` or both `bosonic`. - In other words, in a `GradingCompliant` Wick contraction no contractions occur between - `fermionic` and `bosonic` fields. -/ + In other words, in a `GradingCompliant` Wick contraction if + no contracted pairs occur between `fermionic` and `bosonic` fields. -/ def GradingCompliant (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) := ∀ (a : φsΛ.1), (𝓕 |>ₛ φs[φsΛ.fstFieldOfContract a]) = (𝓕 |>ₛ φs[φsΛ.sndFieldOfContract a]) diff --git a/HepLean/PerturbationTheory/WickContraction/InsertAndContract.lean b/HepLean/PerturbationTheory/WickContraction/InsertAndContract.lean index 4c96c37..852f1d6 100644 --- a/HepLean/PerturbationTheory/WickContraction/InsertAndContract.lean +++ b/HepLean/PerturbationTheory/WickContraction/InsertAndContract.lean @@ -34,8 +34,8 @@ open HepLean.Fin of `φ` (at position `i`) with the new position of `j` after `φ` is added. In other words, `φsΛ.insertAndContract φ i j` is formed by adding `φ` to `φs` at position `i`, - and contracting `φ` with the field originally at position `j` if `j` is not none. - It is a Wick contraction of `φs.insertIdx φ i`, the list `φs` with `φ` inserted at + and contracting `φ` with the field originally at position `j` if `j` is not `none`. + It is a Wick contraction of the list `φs.insertIdx φ i` corresponding to `φs` with `φ` inserted at position `i`. The notation `φsΛ ↩Λ φ i j` is used to denote `φsΛ.insertAndContract φ i j`. -/ diff --git a/HepLean/PerturbationTheory/WickContraction/Sign/InsertNone.lean b/HepLean/PerturbationTheory/WickContraction/Sign/InsertNone.lean index 11643f0..8146156 100644 --- a/HepLean/PerturbationTheory/WickContraction/Sign/InsertNone.lean +++ b/HepLean/PerturbationTheory/WickContraction/Sign/InsertNone.lean @@ -241,7 +241,7 @@ lemma signInsertNone_eq_filterset (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) /-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a graded compliant Wick contraction `φsΛ` of `φs`, an `i ≤ φs.length`, and a `φ` in `𝓕.FieldOp`, then `(φsΛ ↩Λ φ i none).sign = s * φsΛ.sign` - where `s` is the sign got by moving `φ` through the elements of `φ₀…φᵢ₋₁` which + where `s` is the sign arrived at by moving `φ` through the elements of `φ₀…φᵢ₋₁` which are contracted with some element. The proof of this result involves a careful consideration of the contributions of different diff --git a/HepLean/PerturbationTheory/WickContraction/StaticContract.lean b/HepLean/PerturbationTheory/WickContraction/StaticContract.lean index e481b91..60a02f1 100644 --- a/HepLean/PerturbationTheory/WickContraction/StaticContract.lean +++ b/HepLean/PerturbationTheory/WickContraction/StaticContract.lean @@ -35,7 +35,7 @@ noncomputable def staticContract {φs : List 𝓕.FieldOp} `(φsΛ ↩Λ φ i none).staticContract = φsΛ.staticContract` - The prove of this result ultimately a consequence of definitions. + The proof of this result ultimately is a consequence of definitions. -/ @[simp] lemma staticContract_insert_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) @@ -53,7 +53,7 @@ lemma staticContract_insert_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) - `[anPart φ, φs[k]]ₛ` if `i ≤ k` or `[anPart φs[k], φ]ₛ` if `k < i` - `φsΛ.staticContract`. - The proof of this result ultimately a consequence of definitions. + The proof of this result ultimately is a consequence of definitions. -/ lemma staticContract_insert_some (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) diff --git a/HepLean/PerturbationTheory/WickContraction/TimeCond.lean b/HepLean/PerturbationTheory/WickContraction/TimeCond.lean index 9ac387a..ed2a721 100644 --- a/HepLean/PerturbationTheory/WickContraction/TimeCond.lean +++ b/HepLean/PerturbationTheory/WickContraction/TimeCond.lean @@ -96,8 +96,8 @@ lemma empty_mem {φs : List 𝓕.FieldOp} : empty (n := φs.length).EqTimeOnly : rw [eqTimeOnly_iff_forall_finset] simp [empty] -/-- Let `φs` be a list of `𝓕.FieldOp` and `φsΛ` a `WickContraction` of `φs` with - in which every contraction involves two `𝓕FieldOp`s that have the same time, then +/-- Let `φs` be a list of `𝓕.FieldOp` and `φsΛ` a `WickContraction` of `φs` within + which every contraction involves two `𝓕FieldOp`s that have the same time, then `φsΛ.staticContract = φsΛ.timeContract`. -/ lemma staticContract_eq_timeContract_of_eqTimeOnly (h : φsΛ.EqTimeOnly) : φsΛ.staticContract = φsΛ.timeContract := by @@ -193,8 +193,8 @@ lemma timeOrder_timeContract_mul_of_eqTimeOnly_mid {φs : List 𝓕.FieldOp} 𝓣(a * φsΛ.timeContract.1 * b) = φsΛ.timeContract.1 * 𝓣(a * b) := by exact timeOrder_timeContract_mul_of_eqTimeOnly_mid_induction φsΛ hl a b φsΛ.1.card rfl -/-- Let `φs` be a list of `𝓕.FieldOp`, `φsΛ` a `WickContraction` of `φs` with - in which every contraction involves two `𝓕.FieldOp`s that have the same time and +/-- Let `φs` be a list of `𝓕.FieldOp`, `φsΛ` a `WickContraction` of `φs` within + which every contraction involves two `𝓕.FieldOp`s that have the same time and `b` a general element in `𝓕.FieldOpAlgebra`. Then `𝓣(φsΛ.timeContract.1 * b) = φsΛ.timeContract.1 * 𝓣(b)`. diff --git a/HepLean/PerturbationTheory/WickContraction/TimeContract.lean b/HepLean/PerturbationTheory/WickContraction/TimeContract.lean index 80549d9..5859adf 100644 --- a/HepLean/PerturbationTheory/WickContraction/TimeContract.lean +++ b/HepLean/PerturbationTheory/WickContraction/TimeContract.lean @@ -35,7 +35,7 @@ noncomputable def timeContract {φs : List 𝓕.FieldOp} `(φsΛ ↩Λ φ i none).timeContract = φsΛ.timeContract` - The prove of this result ultimately a consequence of definitions. -/ + The proof of this result ultimately is a consequence of definitions. -/ @[simp] lemma timeContract_insert_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) : @@ -51,7 +51,7 @@ lemma timeContract_insert_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) - `timeContract φ φs[k]` if `i ≤ k` or `timeContract φs[k] φ` if `k < i` - `φsΛ.timeContract`. - The proof of this result ultimately a consequence of definitions. -/ + The proof of this result ultimately is a consequence of definitions. -/ lemma timeContract_insertAndContract_some (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted) : @@ -88,7 +88,7 @@ open FieldStatistic - two copies of the exchange sign of `φ` with the uncontracted fields in `φ₀…φₖ₋₁`. These two exchange signs cancel each other out but are included for convenience. - The proof of this result ultimately a consequence of definitions and + The proof of this result ultimately is a consequence of definitions and `timeContract_of_timeOrderRel`. -/ lemma timeContract_insert_some_of_lt (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) @@ -132,7 +132,7 @@ lemma timeContract_insert_some_of_lt - the exchange sign of `φ` with the uncontracted fields in `φ₀…φₖ₋₁`. - the exchange sign of `φ` with the uncontracted fields in `φ₀…φₖ`. - The proof of this result ultimately a consequence of definitions and + The proof of this result ultimately is a consequence of definitions and `timeContract_of_not_timeOrderRel_expand`. -/ lemma timeContract_insert_some_of_not_lt (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) diff --git a/HepLean/PerturbationTheory/WickContraction/UncontractedList.lean b/HepLean/PerturbationTheory/WickContraction/UncontractedList.lean index 166b566..dd672f1 100644 --- a/HepLean/PerturbationTheory/WickContraction/UncontractedList.lean +++ b/HepLean/PerturbationTheory/WickContraction/UncontractedList.lean @@ -583,7 +583,7 @@ lemma uncontractedList_succAboveEmb_toFinset (c : WickContraction n) (i : Fin n. -/ /-- Given a Wick contraction `c : WickContraction n` and a `Fin n.succ`, the number of elements - of `c.uncontractedList` which are less then `i`. + of `c.uncontractedList` which are less than `i`. Suppose we want to insert into `c` at position `i`, then this is the position we would need to insert into `c.uncontractedList`. -/ def uncontractedListOrderPos (c : WickContraction n) (i : Fin n.succ) : ℕ := diff --git a/HepLean/StandardModel/HiggsBoson/Potential.lean b/HepLean/StandardModel/HiggsBoson/Potential.lean index 504165e..dc60d88 100644 --- a/HepLean/StandardModel/HiggsBoson/Potential.lean +++ b/HepLean/StandardModel/HiggsBoson/Potential.lean @@ -174,7 +174,7 @@ lemma pos_𝓵_quadDiscrim_zero_bound (h : 0 < P.𝓵) (φ : HiggsField) (x : Sp rw [neg_le, neg_div'] at h1 exact h1 -/-- If `P.𝓵` is negative, then if `P.μ2` is greater then zero, for all space-time points, +/-- If `P.𝓵` is negative, then if `P.μ2` is greater than zero, for all space-time points, the potential is negative `P.toFun φ x ≤ 0`. -/ lemma neg_𝓵_toFun_neg (h : P.𝓵 < 0) (φ : HiggsField) (x : SpaceTime) : (0 < P.μ2 ∧ P.toFun φ x ≤ 0) ∨ P.μ2 ≤ 0 := by @@ -190,7 +190,7 @@ lemma neg_𝓵_toFun_neg (h : P.𝓵 < 0) (φ : HiggsField) (x : SpaceTime) : exact mul_nonpos_of_nonpos_of_nonneg (mul_nonpos_of_nonpos_of_nonneg (le_of_lt h) (sq_nonneg ‖φ x‖)) (sq_nonneg ‖φ x‖) -/-- If `P.𝓵` is bigger then zero, then if `P.μ2` is less then zero, for all space-time points, +/-- If `P.𝓵` is bigger then zero, then if `P.μ2` is less than zero, for all space-time points, the potential is positive `0 ≤ P.toFun φ x`. -/ lemma pos_𝓵_toFun_pos (h : 0 < P.𝓵) (φ : HiggsField) (x : SpaceTime) : (P.μ2 < 0 ∧ 0 ≤ P.toFun φ x) ∨ 0 ≤ P.μ2 := by diff --git a/HepLean/Tensors/Tree/Elab.lean b/HepLean/Tensors/Tree/Elab.lean index f869b4b..2a45ba3 100644 --- a/HepLean/Tensors/Tree/Elab.lean +++ b/HepLean/Tensors/Tree/Elab.lean @@ -285,7 +285,7 @@ def termNodeSyntax (T : Term) : TermElabM Term := do | _ => return Syntax.mkApp (mkIdent ``TensorTree.vecNode) #[T] /-- Adjusts a list `List ℕ` by subtracting from each natural number the number - of elements before it in the list which are less then itself. This is used + of elements before it in the list which are less than itself. This is used to form a list of pairs which can be used for evaluating indices. -/ def evalAdjustPos (l : List ℕ) : List ℕ := let l' := List.mapAccumr @@ -335,7 +335,7 @@ def toPairs (l : List ℕ) : List (ℕ × ℕ) := | [x] => [(x, 0)] /-- Adjusts a list `List (ℕ × ℕ)` by subtracting from each natural number the number - of elements before it in the list which are less then itself. This is used + of elements before it in the list which are less than itself. This is used to form a list of pairs which can be used for contracting indices. -/ def contrListAdjust (l : List (ℕ × ℕ)) : List (ℕ × ℕ) := let l' := l.flatMap (fun p => [p.1, p.2]) diff --git a/scripts/MetaPrograms/notes.lean b/scripts/MetaPrograms/notes.lean index a3f5d48..2575b2e 100644 --- a/scripts/MetaPrograms/notes.lean +++ b/scripts/MetaPrograms/notes.lean @@ -40,6 +40,7 @@ structure DeclInfo where declString : String docString : String isDef : Bool + isThm : Bool def DeclInfo.ofName (n : Name) (ns : NameStatus): MetaM DeclInfo := do let line ← Name.lineNumber n @@ -48,6 +49,7 @@ def DeclInfo.ofName (n : Name) (ns : NameStatus): MetaM DeclInfo := do let docString ← Name.getDocString n let constInfo ← getConstInfo n let isDef := constInfo.isDef ∨ Lean.isStructure (← getEnv) n ∨ constInfo.isInductive + let isThm := declString.startsWith "theorem" ∨ declString.startsWith "noncomputable theorem" pure { line := line, fileName := fileName, @@ -55,7 +57,8 @@ def DeclInfo.ofName (n : Name) (ns : NameStatus): MetaM DeclInfo := do status := ns, declString := declString, docString := docString, - isDef := isDef} + isDef := isDef + isThm := isThm} def DeclInfo.toYML (d : DeclInfo) : MetaM String := do let declStringIndent := d.declString.replace "\n" "\n " @@ -69,6 +72,7 @@ def DeclInfo.toYML (d : DeclInfo) : MetaM String := do status: \"{d.status}\" link: \"{link}\" isDef: {d.isDef} + isThm: {d.isThm} docString: | {docStringIndent} declString: | @@ -244,7 +248,7 @@ def perturbationTheory : Note where .h2 "Normal order", .name ``FieldSpecification.FieldOpAlgebra.normalOrder_uncontracted_none .complete, .name ``FieldSpecification.FieldOpAlgebra.normalOrder_uncontracted_some .complete, - .h1 "Static Wicks theorem", + .h1 "Static Wick's theorem", .h2 "Static contractions", .name ``WickContraction.staticContract .complete, .name ``WickContraction.staticContract_insert_none .complete, @@ -255,7 +259,7 @@ def perturbationTheory : Note where .name ``WickContraction.staticWickTerm_insert_zero_none .complete, .name ``WickContraction.staticWickTerm_insert_zero_some .complete, .name ``WickContraction.mul_staticWickTerm_eq_sum .complete, - .h2 "The Static Wicks theorem", + .h2 "The Static Wick's theorem", .name ``FieldSpecification.FieldOpAlgebra.static_wick_theorem .complete, .h1 "Wick's theorem", .h2 "Time contractions",