feat: LorentzAction_on_isEmpty
This commit is contained in:
parent
86e7ea6c0f
commit
d385f72087
2 changed files with 15 additions and 7 deletions
|
@ -270,13 +270,8 @@ open Matrix
|
|||
|
||||
/-- The action of the Lorentz group on `ofReal v` is trivial. -/
|
||||
@[simp]
|
||||
lemma lorentzAction_ofReal (r : ℝ) : Λ • ofReal d r = ofReal d r := by
|
||||
refine ext' rfl ?_
|
||||
funext i
|
||||
erw [lorentzAction_smul_coord]
|
||||
simp only [Finset.univ_unique, Finset.univ_eq_empty, Finset.prod_empty, one_mul,
|
||||
Finset.sum_singleton, IndexValue]
|
||||
rfl
|
||||
lemma lorentzAction_ofReal (r : ℝ) : Λ • ofReal d r = ofReal d r :=
|
||||
lorentzAction_on_isEmpty Λ (ofReal d r)
|
||||
|
||||
/-- The action of the Lorentz group on `ofVecUp v` is by vector multiplication. -/
|
||||
@[simp]
|
||||
|
|
|
@ -139,4 +139,17 @@ instance lorentzAction : MulAction (LorentzGroup d) (RealLorentzTensor d X) wher
|
|||
@[simps!]
|
||||
instance : MulAction (LorentzGroup d) (Marked d X n) := lorentzAction
|
||||
|
||||
/-- The action on an empty Lorentz tensor is trivial. -/
|
||||
lemma lorentzAction_on_isEmpty [IsEmpty X] (Λ : LorentzGroup d) (T : RealLorentzTensor d X) :
|
||||
Λ • T = T := by
|
||||
refine ext' rfl ?_
|
||||
funext i
|
||||
erw [lorentzAction_smul_coord]
|
||||
simp only [Finset.univ_unique, Finset.univ_eq_empty, Finset.prod_empty, one_mul,
|
||||
Finset.sum_singleton]
|
||||
simp only [IndexValue, Unique.eq_default]
|
||||
|
||||
/-! TODO: Show that the Lorentz action commutes with multiplication. -/
|
||||
/-! TODO: Show that the Lorentz action commutes with contraction. -/
|
||||
/-! TODO: Show that the Lorentz action commutes with rising and lowering indices. -/
|
||||
end RealLorentzTensor
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue