Merge pull request #79 from HEPLean/Update-versions

docs: More todos
This commit is contained in:
Joseph Tooby-Smith 2024-07-09 20:36:53 -04:00 committed by GitHub
commit d3d3de2c44
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 13 additions and 23 deletions

View file

@ -623,7 +623,8 @@ lemma Pa'_eq (f f' : (Fin n.succ) ⊕ (Fin n) → ) : Pa' f = Pa' f' ↔ f =
intro h intro h
rw [h] rw [h]
/-- A helper function for what follows. TODO: replace this with mathlib functions. -/ /-! TODO: Replace the definition of `join` with a Mathlib definition, most likely `Sum.elim`. -/
/-- A helper function for what follows. -/
def join (g : Fin n.succ → ) (f : Fin n → ) : (Fin n.succ) ⊕ (Fin n) → := fun i => def join (g : Fin n.succ → ) (f : Fin n → ) : (Fin n.succ) ⊕ (Fin n) → := fun i =>
match i with match i with
| .inl i => g i | .inl i => g i

View file

@ -608,7 +608,8 @@ lemma Pa'_eq (f f' : (Fin n.succ) ⊕ (Fin n.succ) → ) : Pa' f = Pa' f'
intro h intro h
rw [h] rw [h]
/-- A helper function for what follows. TODO: replace this with mathlib functions. -/ /-! TODO: Replace the definition of `join` with a Mathlib definition, most likely `Sum.elim`. -/
/-- A helper function for what follows. -/
def join (g f : Fin n → ) : Fin n ⊕ Fin n → := fun i => def join (g f : Fin n → ) : Fin n ⊕ Fin n → := fun i =>
match i with match i with
| .inl i => g i | .inl i => g i

View file

@ -106,7 +106,8 @@ lemma FamilyPermutations_anomalyFreeLinear_apply (S : (PureU1 n).LinSols)
((FamilyPermutations n).linSolRep f S).val i = S.val (f.invFun i) := by ((FamilyPermutations n).linSolRep f S).val i = S.val (f.invFun i) := by
rfl rfl
/-- The permutation which swaps i and j. TODO: Replace with: `Equiv.swap`. -/ /-! TODO: Replace the definition of `pairSwap` with `Equiv.swap`. -/
/-- The permutation which swaps i and j. -/
def pairSwap {n : } (i j : Fin n) : (FamilyPermutations n).group where def pairSwap {n : } (i j : Fin n) : (FamilyPermutations n).group where
toFun s := toFun s :=
if s = i then if s = i then

View file

@ -10,11 +10,8 @@ import Mathlib.Logic.Equiv.Fin
For the `n`-even case we define the property of a charge assignment being vector like. For the `n`-even case we define the property of a charge assignment being vector like.
## TODO
The `n`-odd case.
-/ -/
/-! TODO: Define vector like ACC in the `n`-odd case. -/
universe v u universe v u
open Nat open Nat

View file

@ -12,12 +12,8 @@ import Mathlib.Data.Fintype.BigOperators
Some definitions and properties of linear, bilinear, and trilinear maps, along with homogeneous Some definitions and properties of linear, bilinear, and trilinear maps, along with homogeneous
quadratic and cubic equations. quadratic and cubic equations.
## TODO
Use definitions in `Mathlib4` for definitions where possible.
In particular a HomogeneousQuadratic should be a map `V →ₗ[] V →ₗ[] ` etc.
-/ -/
/-! TODO: Replace the definitions in this file with Mathlib definitions. -/
/-- The structure defining a homogeneous quadratic equation. -/ /-- The structure defining a homogeneous quadratic equation. -/
@[simp] @[simp]

View file

@ -16,17 +16,13 @@ a four velocity `u` to a four velocity `v`.
A boost is the special case of a generalised boost when `u = stdBasis 0`. A boost is the special case of a generalised boost when `u = stdBasis 0`.
## TODO
- Show that generalised boosts are in the restricted Lorentz group.
- Define boosts.
## References ## References
- The main argument follows: Guillem Cobos, The Lorentz Group, 2015: - The main argument follows: Guillem Cobos, The Lorentz Group, 2015:
https://diposit.ub.edu/dspace/bitstream/2445/68763/2/memoria.pdf https://diposit.ub.edu/dspace/bitstream/2445/68763/2/memoria.pdf
-/ -/
/-! TODO: Show that generalised boosts are in the restricted Lorentz group. -/
noncomputable section noncomputable section
namespace LorentzGroup namespace LorentzGroup

View file

@ -11,11 +11,8 @@ import HepLean.SpaceTime.LorentzGroup.Proper
We define the give a series of lemmas related to the orthochronous property of lorentz We define the give a series of lemmas related to the orthochronous property of lorentz
matrices. matrices.
## TODO
- Prove topological properties.
-/ -/
/-! TODO: Prove topological properties of the Orthochronous Lorentz Group. -/
noncomputable section noncomputable section

View file

@ -21,7 +21,7 @@ open Matrix
open Complex open Complex
open ComplexConjugate open ComplexConjugate
/-- The global gauge group of the standard model. TODO: Generalize to quotient. -/ /-- The global gauge group of the standard model. -/
abbrev GaugeGroup : Type := abbrev GaugeGroup : Type :=
specialUnitaryGroup (Fin 3) × specialUnitaryGroup (Fin 2) × unitary specialUnitaryGroup (Fin 3) × specialUnitaryGroup (Fin 2) × unitary

View file

@ -41,7 +41,8 @@ open SpaceTime
-/ -/
/-- The trivial vector bundle 𝓡² × ℂ². (TODO: Make associated bundle.) -/ /-! TODO: Make `HiggsBundle` an associated bundle. -/
/-- The trivial vector bundle 𝓡² × ℂ². -/
abbrev HiggsBundle := Bundle.Trivial SpaceTime HiggsVec abbrev HiggsBundle := Bundle.Trivial SpaceTime HiggsVec
instance : SmoothVectorBundle HiggsVec HiggsBundle SpaceTime.asSmoothManifold := instance : SmoothVectorBundle HiggsVec HiggsBundle SpaceTime.asSmoothManifold :=