refactor: lint

This commit is contained in:
jstoobysmith 2024-04-29 10:42:44 -04:00
parent 490ed0380c
commit d448c78045
8 changed files with 343 additions and 163 deletions

View file

@ -8,14 +8,25 @@ import HepLean.FlavorPhysics.CKMMatrix.Rows
import HepLean.FlavorPhysics.CKMMatrix.PhaseFreedom
import HepLean.FlavorPhysics.CKMMatrix.Invariants
import Mathlib.Analysis.SpecialFunctions.Complex.Arg
/-!
# Standard parameterization for the CKM Matrix
This file defines the standard parameterization of CKM matrices in terms of
four real numbers `θ₁₂`, `θ₁₃`, `θ₂₃` and `δ₁₃`.
We will show that every CKM matrix can be written within this standard parameterization
in the file `FlavorPhysics.CKMMatrix.StandardParameters`.
-/
open Matrix Complex
open ComplexConjugate
open CKMMatrix
noncomputable section
-- to be renamed stanParamAsMatrix ...
/-- Given four reals `θ₁₂ θ₁₃ θ₂₃ δ₁₃` the standard paramaterization of the CKM matrix
as a `3×3` complex matrix. -/
def standParamAsMatrix (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) : Matrix (Fin 3) (Fin 3) :=
![![Real.cos θ₁₂ * Real.cos θ₁₃, Real.sin θ₁₂ * Real.cos θ₁₃, Real.sin θ₁₃ * exp (-I * δ₁₃)],
![(-Real.sin θ₁₂ * Real.cos θ₂₃) - (Real.cos θ₁₂ * Real.sin θ₁₃ * Real.sin θ₂₃ * exp (I * δ₁₃)),
@ -87,6 +98,8 @@ lemma standParamAsMatrix_unitary (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) :
rw [sin_sq, sin_sq]
ring
/-- Given four reals `θ₁₂ θ₁₃ θ₂₃ δ₁₃` the standard paramaterization of the CKM matrix
as a CKM matrix. -/
def standParam (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) : CKMMatrix :=
⟨standParamAsMatrix θ₁₂ θ₁₃ θ₂₃ δ₁₃, by
rw [mem_unitaryGroup_iff']
@ -137,13 +150,13 @@ lemma eq_exp_of_phases (θ₁₂ θ₁₃ θ₂₃ δ₁₃ δ₁₃' : ) (h
standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃ = standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃' := by
simp [standParam, standParamAsMatrix]
apply CKMMatrix_ext
simp
simp only
rw [show exp (I * δ₁₃) = exp (I * δ₁₃') by rw [mul_comm, h, mul_comm]]
rw [show cexp (-(I * ↑δ₁₃)) = cexp (-(I * ↑δ₁₃')) by rw [exp_neg, exp_neg, mul_comm, h, mul_comm]]
open Invariant in
lemma VusVubVcdSq_eq (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) (h1 : 0 ≤ Real.sin θ₁₂)
(h2 : 0 ≤ Real.cos θ₁₃) (h3 : 0 ≤ Real.sin θ₂₃) (h4 : 0 ≤ Real.cos θ₁₂) :
(h2 : 0 ≤ Real.cos θ₁₃) (h3 : 0 ≤ Real.sin θ₂₃) (h4 : 0 ≤ Real.cos θ₁₂) :
VusVubVcdSq ⟦standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃⟧ =
Real.sin θ₁₂ ^ 2 * Real.cos θ₁₃ ^ 2 * Real.sin θ₁₃ ^ 2 * Real.sin θ₂₃ ^ 2 := by
simp only [VusVubVcdSq, VusAbs, VAbs, VAbs', Fin.isValue, standParam, standParamAsMatrix,
@ -152,7 +165,8 @@ lemma VusVubVcdSq_eq (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) (h1 : 0 ≤ Rea
VcbAbs, VudAbs, Complex.abs_ofReal]
by_cases hx : Real.cos θ₁₃ ≠ 0
· rw [Complex.abs_exp]
simp
simp only [neg_re, mul_re, I_re, ofReal_re, zero_mul, I_im, ofReal_im, mul_zero, sub_self,
neg_zero, Real.exp_zero, mul_one, _root_.sq_abs]
rw [_root_.abs_of_nonneg h1, _root_.abs_of_nonneg h3, _root_.abs_of_nonneg h2,
_root_.abs_of_nonneg h4]
simp [sq]
@ -175,7 +189,7 @@ lemma mulExpδ₁₃_eq (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) (h1 : 0 ≤
Quotient.lift_mk, jarlskogCKM, Fin.isValue, cons_val', cons_val_one, head_cons,
empty_val', cons_val_fin_one, cons_val_zero, cons_val_two, tail_cons, _root_.map_mul, ←
exp_conj, map_neg, conj_I, conj_ofReal, neg_neg, map_sub]
simp
simp only [ofReal_sin, ofReal_cos, ofReal_mul, ofReal_pow]
ring_nf
rw [exp_neg]
have h1 : cexp (I * δ₁₃) ≠ 0 := exp_ne_zero _