docs: Notes for normal-ordered Wicks
This commit is contained in:
parent
c9607c459f
commit
d472604aec
15 changed files with 324 additions and 131 deletions
|
@ -22,12 +22,17 @@ open FieldOpAlgebra
|
|||
open FieldStatistic
|
||||
noncomputable section
|
||||
|
||||
/-- For a Wick contraction `φsΛ`, we define `staticWickTerm φsΛ` to be the element of
|
||||
`𝓕.FieldOpAlgebra` given by `φsΛ.sign • φsΛ.staticContract * 𝓝([φsΛ]ᵘᶜ)`. -/
|
||||
/-- For a list `φs` of `𝓕.FieldOp`, and a Wick contraction `φsΛ` of `φs`, the element
|
||||
of `𝓕.FieldOpAlgebra`, `φsΛ.staticWickTerm` is defined as
|
||||
|
||||
`φsΛ.sign • φsΛ.staticContract * 𝓝([φsΛ]ᵘᶜ)`.
|
||||
|
||||
This is term which appears in the static version Wick's theorem. -/
|
||||
def staticWickTerm {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) : 𝓕.FieldOpAlgebra :=
|
||||
φsΛ.sign • φsΛ.staticContract * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ)
|
||||
|
||||
/-- The static Wick term for the empty contraction of the empty list is `1`. -/
|
||||
/-- For the empty list `[]` of `𝓕.FieldOp`, the `staticWickTerm` of the empty Wick contraction
|
||||
`empty` of `[]` (its only Wick contraction) is `1`. -/
|
||||
@[simp]
|
||||
lemma staticWickTerm_empty_nil :
|
||||
staticWickTerm (empty (n := ([] : List 𝓕.FieldOp).length)) = 1 := by
|
||||
|
@ -35,7 +40,9 @@ lemma staticWickTerm_empty_nil :
|
|||
simp [sign, empty, staticContract]
|
||||
|
||||
/--
|
||||
Let `φsΛ` be a Wick Contraction for `φs = φ₀φ₁…φₙ`. Then the following holds
|
||||
For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, and an element `φ` of
|
||||
`𝓕.FieldOp`, the following relation holds
|
||||
|
||||
`(φsΛ ↩Λ φ 0 none).staticWickTerm = φsΛ.sign • φsΛ.staticWickTerm * 𝓝(φ :: [φsΛ]ᵘᶜ)`
|
||||
|
||||
The proof of this result relies on
|
||||
|
@ -51,8 +58,9 @@ lemma staticWickTerm_insert_zero_none (φ : 𝓕.FieldOp) (φs : List 𝓕.Field
|
|||
simp only [staticContract_insert_none, insertAndContract_uncontractedList_none_zero,
|
||||
Algebra.smul_mul_assoc]
|
||||
|
||||
/-- Let `φsΛ` be a Wick contraction for `φs = φ₀φ₁…φₙ`. Then`(φsΛ ↩Λ φ 0 (some k)).wickTerm`
|
||||
is equal the product of
|
||||
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
|
||||
`𝓕.FieldOp`, and a `k` in `φsΛ.uncontracted`, `(φsΛ ↩Λ φ 0 (some k)).wickTerm` is equal
|
||||
to the product of
|
||||
- the sign `𝓢(φ, φ₀…φᵢ₋₁) `
|
||||
- the sign `φsΛ.sign`
|
||||
- `φsΛ.staticContract`
|
||||
|
@ -60,9 +68,8 @@ is equal the product of
|
|||
uncontracted fields in `φ₀…φₖ₋₁`
|
||||
- the normal ordering `𝓝([φsΛ]ᵘᶜ.erase (uncontractedFieldOpEquiv φs φsΛ k))`.
|
||||
|
||||
The proof of this result relies on
|
||||
- `staticContract_insert_some_of_lt` to rewrite static
|
||||
contractions.
|
||||
The proof of this result ultimitley relies on
|
||||
- `staticContract_insert_some` to rewrite static contractions.
|
||||
- `normalOrder_uncontracted_some` to rewrite normal orderings.
|
||||
- `sign_insert_some_zero` to rewrite signs.
|
||||
-/
|
||||
|
@ -106,13 +113,16 @@ lemma staticWickTerm_insert_zero_some (φ : 𝓕.FieldOp) (φs : List 𝓕.Field
|
|||
simp
|
||||
|
||||
/--
|
||||
Let `φsΛ` be a Wick contraction for `φs = φ₀φ₁…φₙ`. Then
|
||||
For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, the following relation
|
||||
holds
|
||||
|
||||
`φ * φsΛ.staticWickTerm = ∑ k, (φsΛ ↩Λ φ i k).wickTerm`
|
||||
|
||||
where the sum is over all `k` in `Option φsΛ.uncontracted` (so either `none` or `some k`).
|
||||
|
||||
The proof of proceeds as follows:
|
||||
- `ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum` is used to expand `φ 𝓝([φsΛ]ᵘᶜ)` as
|
||||
a sum over `k` in `Option φsΛ.uncontracted` of terms involving `[φ, φs[k]]` etc.
|
||||
a sum over `k` in `Option φsΛ.uncontracted` of terms involving `[anPart φ, φs[k]]ₛ`.
|
||||
- Then `staticWickTerm_insert_zero_none` and `staticWickTerm_insert_zero_some` are
|
||||
used to equate terms.
|
||||
-/
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue