feat: Start permutation contraction comm

This commit is contained in:
jstoobysmith 2024-10-17 17:11:06 +00:00
parent 672cc1ed8b
commit d542ae3903
4 changed files with 467 additions and 95 deletions

View file

@ -0,0 +1,245 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import Mathlib.LinearAlgebra.PiTensorProduct
import Mathlib.Tactic.Polyrith
import Mathlib.Tactic.Linarith
/-!
# Fin lemmas
The purpose of this file is to define some results Fin currently
in Mathlib.
At some point these should either be up-streamed to Mathlib or replaced with definitions already
in Mathlib.
-/
namespace HepLean.Fin
open Fin
variable {n : Nat}
def predAboveI (i x : Fin n.succ.succ) : Fin n.succ :=
if h : x.val < i.val then
⟨x.val, by omega⟩
else
⟨x.val - 1, by
by_cases hx : x = 0
· omega
· omega⟩
lemma predAboveI_self (i : Fin n.succ.succ) : predAboveI i i = ⟨i.val - 1, by omega⟩ := by
simp [predAboveI]
@[simp]
lemma predAboveI_succAbove (i : Fin n.succ.succ) (x : Fin n.succ) :
predAboveI i (Fin.succAbove i x) = x := by
simp [predAboveI, Fin.succAbove, Fin.ext_iff]
split_ifs
· rfl
· rename_i h1 h2
simp [Fin.lt_def] at h1 h2
omega
· rfl
lemma succsAbove_predAboveI {i x : Fin n.succ.succ} (h : i ≠ x) :
Fin.succAbove i (predAboveI i x) = x := by
simp [Fin.succAbove, predAboveI, Fin.ext_iff]
split_ifs
· rfl
· rename_i h1 h2
rw [Fin.lt_def] at h1 h2
simp
simp at h2
rw [Fin.le_def] at h2
omega
· rename_i h1 h2
simp at h1
rw [Fin.le_def] at h1
rw [Fin.lt_def] at h2
simp at h2
omega
· rename_i h1 h2
simp
simp at h1
rw [Fin.le_def] at h1
omega
lemma predAbove_eq_iff {i x : Fin n.succ.succ} (h : i ≠ x) (y : Fin n.succ) :
y = predAboveI i x ↔ i.succAbove y = x := by
apply Iff.intro
· intro h
subst h
rw [succsAbove_predAboveI h]
· intro h
rw [← h]
simp
lemma predAboveI_lt {i x : Fin n.succ.succ} (h : x.val < i.val) :
predAboveI i x = ⟨x.val, by omega⟩ := by
simp [predAboveI, h]
lemma predAboveI_ge {i x : Fin n.succ.succ} (h : i.val < x.val) :
predAboveI i x = ⟨x.val - 1, by omega⟩ := by
simp [predAboveI, h]
omega
/-- The equivalence between `Fin n.succ` and `Fin 1 ⊕ Fin n` extracting the
`i`th component. -/
def finExtractOne {n : } (i : Fin n.succ) : Fin n.succ ≃ Fin 1 ⊕ Fin n :=
(finCongr (by omega : n.succ = i + 1 + (n - i))).trans <|
finSumFinEquiv.symm.trans <|
(Equiv.sumCongr (finSumFinEquiv.symm.trans (Equiv.sumComm (Fin i) (Fin 1)))
(Equiv.refl (Fin (n-i)))).trans <|
(Equiv.sumAssoc (Fin 1) (Fin i) (Fin (n - i))).trans <|
Equiv.sumCongr (Equiv.refl (Fin 1)) (finSumFinEquiv.trans (finCongr (by omega)))
lemma finExtractOne_apply_eq {n : } (i : Fin n.succ) :
finExtractOne i i = Sum.inl 0 := by
simp [finExtractOne]
have h1 : Fin.cast (finExtractOne.proof_1 i) i = Fin.castAdd ((n - ↑i) ) ⟨i.1, lt_add_one i.1⟩ := by
simp [Fin.ext_iff]
rw [h1, finSumFinEquiv_symm_apply_castAdd]
simp
have h2 : @Fin.mk (↑i + 1) ↑i (lt_add_one i.1) = Fin.natAdd i.val 1 := by
simp [Fin.ext_iff]
rw [h2, finSumFinEquiv_symm_apply_natAdd]
rfl
lemma finExtractOne_symm_inr {n : } (i : Fin n.succ) :
(finExtractOne i).symm ∘ Sum.inr = i.succAbove := by
ext x
simp only [Nat.succ_eq_add_one, finExtractOne, Function.comp_apply, Equiv.symm_trans_apply,
finCongr_symm, Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply,
Equiv.coe_refl, Sum.map_inr, finCongr_apply, Fin.coe_cast]
change (finSumFinEquiv
(Sum.map (⇑(finSumFinEquiv.symm.trans (Equiv.sumComm (Fin ↑i) (Fin 1))).symm) id
((Equiv.sumAssoc (Fin 1) (Fin ↑i) (Fin (n - i))).symm
(Sum.inr (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)))))).val = _
by_cases hi : x.1 < i.1
· have h1 : (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)) =
Sum.inl ⟨x, hi⟩ := by
rw [← finSumFinEquiv_symm_apply_castAdd]
apply congrArg
ext
simp
rw [h1]
simp only [Nat.succ_eq_add_one, Equiv.sumAssoc_symm_apply_inr_inl, Sum.map_inl,
Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.sumComm_symm, Equiv.sumComm_apply,
Sum.swap_inr, finSumFinEquiv_apply_left, Fin.castAdd_mk]
rw [Fin.succAbove]
split
· rfl
rename_i hn
simp_all only [Nat.succ_eq_add_one, not_lt, Fin.le_def, Fin.coe_castSucc, Fin.val_succ,
self_eq_add_right, one_ne_zero]
omega
· have h1 : (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)) =
Sum.inr ⟨x - i, by omega⟩ := by
rw [← finSumFinEquiv_symm_apply_natAdd]
apply congrArg
ext
simp only [Nat.succ_eq_add_one, Fin.coe_cast, Fin.natAdd_mk]
omega
rw [h1, Fin.succAbove]
split
· rename_i hn
simp_all [Fin.lt_def]
simp only [Nat.succ_eq_add_one, Equiv.sumAssoc_symm_apply_inr_inr, Sum.map_inr, id_eq,
finSumFinEquiv_apply_right, Fin.natAdd_mk, Fin.val_succ]
omega
@[simp]
lemma finExtractOne_symm_inr_apply {n : } (i : Fin n.succ) (x : Fin n) :
(finExtractOne i).symm (Sum.inr x) = i.succAbove x := calc
_ = ((finExtractOne i).symm ∘ Sum.inr) x := rfl
_ = i.succAbove x := by rw [finExtractOne_symm_inr]
@[simp]
lemma finExtractOne_symm_inl_apply {n : } (i : Fin n.succ) :
(finExtractOne i).symm (Sum.inl 0) = i := by
simp only [Nat.succ_eq_add_one, finExtractOne, Fin.isValue, Equiv.symm_trans_apply, finCongr_symm,
Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply, Equiv.coe_refl,
Sum.map_inl, id_eq, Equiv.sumAssoc_symm_apply_inl, Equiv.sumComm_symm, Equiv.sumComm_apply,
Sum.swap_inl, finSumFinEquiv_apply_right, finSumFinEquiv_apply_left, finCongr_apply]
ext
rfl
def finExtractOnPermHom (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ) :
Fin n.succ → Fin n.succ := fun x => predAboveI (σ i) (σ ((finExtractOne i).symm (Sum.inr x)))
lemma finExtractOnPermHom_inv (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ) :
(finExtractOnPermHom (σ i) σ.symm) ∘ (finExtractOnPermHom i σ) = id := by
funext x
simp [finExtractOnPermHom]
by_cases h : σ (i.succAbove x) < σ i
· rw [predAboveI_lt h, Fin.succAbove_of_castSucc_lt]
· simp
· simp_all [Fin.lt_def]
have hσ : σ (i.succAbove x) ≠ σ i := by
simp only [Nat.succ_eq_add_one, ne_eq, EmbeddingLike.apply_eq_iff_eq]
exact Fin.succAbove_ne i x
have hn : σ i < σ (i.succAbove x) := by omega
rw [predAboveI_ge hn]
rw [Fin.succAbove_of_le_castSucc]
· simp
trans predAboveI i (σ.symm (σ (i.succAbove x)))
· congr
exact Nat.sub_add_cancel (Fin.lt_of_le_of_lt (Fin.zero_le (σ i)) hn)
simp
rw [Fin.le_def]
simp
omega
def finExtractOnePerm (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ) :
Fin n.succ ≃ Fin n.succ where
toFun x := finExtractOnPermHom i σ x
invFun x := finExtractOnPermHom (σ i) σ.symm x
left_inv x := by
simpa using congrFun (finExtractOnPermHom_inv i σ) x
right_inv x := by
simpa using congrFun (finExtractOnPermHom_inv (σ i) σ.symm) x
/-- The equivalence of types `Fin n.succ.succ ≃ (Fin 1 ⊕ Fin 1) ⊕ Fin n` extracting
the `i` and `(i.succAbove j)`. -/
def finExtractTwo {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
Fin n.succ.succ ≃ (Fin 1 ⊕ Fin 1) ⊕ Fin n :=
(finExtractOne i).trans <|
(Equiv.sumCongr (Equiv.refl (Fin 1)) (finExtractOne j)).trans <|
(Equiv.sumAssoc (Fin 1) (Fin 1) (Fin n)).symm
@[simp]
lemma finExtractTwo_apply_fst {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
finExtractTwo i j i = Sum.inl (Sum.inl 0) := by
simp [finExtractTwo]
simp [finExtractOne_apply_eq]
lemma finExtractTwo_symm_inr {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
(finExtractTwo i j).symm ∘ Sum.inr = i.succAbove ∘ j.succAbove := by
rw [finExtractTwo]
ext1 x
simp
@[simp]
lemma finExtractTwo_symm_inr_apply {n : } (i : Fin n.succ.succ) (j : Fin n.succ) (x : Fin n) :
(finExtractTwo i j).symm (Sum.inr x) = i.succAbove (j.succAbove x) := by
rw [finExtractTwo]
simp
@[simp]
lemma finExtractTwo_symm_inl_inr_apply {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
(finExtractTwo i j).symm (Sum.inl (Sum.inr 0)) = i.succAbove j := by
rw [finExtractTwo]
simp
@[simp]
lemma finExtractTwo_symm_inl_inl_apply {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
(finExtractTwo i j).symm (Sum.inl (Sum.inl 0)) = i := by
rw [finExtractTwo]
simp
end HepLean.Fin

View file

@ -42,6 +42,9 @@ namespace Hom
variable {C : Type} {f g h : OverColor C}
lemma ext (m n : f ⟶ g) (h : m.hom = n.hom) : m = n := by
apply CategoryTheory.Iso.ext h
/-- Given a hom in `OverColor C` the underlying equivalence between types. -/
def toEquiv (m : f ⟶ g) : f.left ≃ g.left where
toFun := m.hom.left
@ -75,6 +78,10 @@ lemma toEquiv_comp_inv_apply (m : f ⟶ g) (i : g.left) :
f.hom ((OverColor.Hom.toEquiv m).symm i) = g.hom i := by
simpa [toEquiv, types_comp] using congrFun m.inv.w i
lemma toEquiv_comp_apply (m : f ⟶ g) (i : f.left) :
f.hom i = g.hom ((toEquiv m) i) := by
simpa [toEquiv, types_comp] using (congrFun m.hom.w i).symm
/-- Given a morphism in `OverColor C`, the corresponding isomorphism. -/
def toIso (m : f ⟶ g) : f ≅ g := {
hom := m,
@ -253,6 +260,8 @@ end monoidal
/-- Make an object of `OverColor C` from a map `X → C`. -/
def mk (f : X → C) : OverColor C := Over.mk f
@[simp]
lemma mk_hom (f : X → C) : (mk f).hom = f := rfl
open MonoidalCategory
end OverColor

View file

@ -5,6 +5,8 @@ Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.OverColor.Functors
import HepLean.Tensors.OverColor.Lift
import HepLean.Mathematics.Fin
import LLMLean
/-!
## Isomorphisms in the OverColor category
@ -14,7 +16,7 @@ namespace IndexNotation
namespace OverColor
open CategoryTheory
open MonoidalCategory
open HepLean.Fin
/-!
## Useful equivalences.
@ -63,106 +65,149 @@ def fin2Iso {c : Fin 2 → C} : mk c ≅ mk ![c 0] ⊗ mk ![c 1] := by
fin_cases x
rfl
/-- The equivalence between `Fin n.succ` and `Fin 1 ⊕ Fin n` extracting the
`i`th component. -/
def finExtractOne {n : } (i : Fin n.succ) : Fin n.succ ≃ Fin 1 ⊕ Fin n :=
(finCongr (by omega : n.succ = i + 1 + (n - i))).trans <|
finSumFinEquiv.symm.trans <|
(Equiv.sumCongr (finSumFinEquiv.symm.trans (Equiv.sumComm (Fin i) (Fin 1)))
(Equiv.refl (Fin (n-i)))).trans <|
(Equiv.sumAssoc (Fin 1) (Fin i) (Fin (n - i))).trans <|
Equiv.sumCongr (Equiv.refl (Fin 1)) (finSumFinEquiv.trans (finCongr (by omega)))
lemma finExtractOne_symm_inr {n : } (i : Fin n.succ) :
(finExtractOne i).symm ∘ Sum.inr = i.succAbove := by
ext x
simp only [Nat.succ_eq_add_one, finExtractOne, Function.comp_apply, Equiv.symm_trans_apply,
finCongr_symm, Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply,
Equiv.coe_refl, Sum.map_inr, finCongr_apply, Fin.coe_cast]
change (finSumFinEquiv
(Sum.map (⇑(finSumFinEquiv.symm.trans (Equiv.sumComm (Fin ↑i) (Fin 1))).symm) id
((Equiv.sumAssoc (Fin 1) (Fin ↑i) (Fin (n - i))).symm
(Sum.inr (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)))))).val = _
by_cases hi : x.1 < i.1
· have h1 : (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)) =
Sum.inl ⟨x, hi⟩ := by
rw [← finSumFinEquiv_symm_apply_castAdd]
apply congrArg
ext
simp
rw [h1]
simp only [Nat.succ_eq_add_one, Equiv.sumAssoc_symm_apply_inr_inl, Sum.map_inl,
Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.sumComm_symm, Equiv.sumComm_apply,
Sum.swap_inr, finSumFinEquiv_apply_left, Fin.castAdd_mk]
rw [Fin.succAbove]
split
def extractOne {n : } (i : Fin n.succ.succ)
{c1 c2 : Fin n.succ.succ → C} (σ : mk c1 ⟶ mk c2) :
mk (c1 ∘ Fin.succAbove ((Hom.toEquiv σ).symm i)) ⟶ mk (c2 ∘ Fin.succAbove i) :=
equivToHomEq ((finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ))) (by
intro x
simp_all only [Nat.succ_eq_add_one, Function.comp_apply]
have h1 := Hom.toEquiv_comp_inv_apply σ (i.succAbove x)
simp at h1
rw [← h1]
apply congrArg
simp [finExtractOnePerm, finExtractOnPermHom]
erw [Equiv.apply_symm_apply]
rw [succsAbove_predAboveI]
· rfl
rename_i hn
simp_all only [Nat.succ_eq_add_one, not_lt, Fin.le_def, Fin.coe_castSucc, Fin.val_succ,
self_eq_add_right, one_ne_zero]
omega
· have h1 : (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)) =
Sum.inr ⟨x - i, by omega⟩ := by
rw [← finSumFinEquiv_symm_apply_natAdd]
apply congrArg
ext
simp only [Nat.succ_eq_add_one, Fin.coe_cast, Fin.natAdd_mk]
omega
rw [h1, Fin.succAbove]
split
· rename_i hn
simp_all [Fin.lt_def]
simp only [Nat.succ_eq_add_one, Equiv.sumAssoc_symm_apply_inr_inr, Sum.map_inr, id_eq,
finSumFinEquiv_apply_right, Fin.natAdd_mk, Fin.val_succ]
omega
simp
erw [Equiv.apply_eq_iff_eq]
exact (Fin.succAbove_ne i x).symm)
@[simp]
lemma finExtractOne_symm_inr_apply {n : } (i : Fin n.succ) (x : Fin n) :
(finExtractOne i).symm (Sum.inr x) = i.succAbove x := calc
_ = ((finExtractOne i).symm ∘ Sum.inr) x := rfl
_ = i.succAbove x := by rw [finExtractOne_symm_inr]
@[simp]
lemma finExtractOne_symm_inl_apply {n : } (i : Fin n.succ) :
(finExtractOne i).symm (Sum.inl 0) = i := by
simp only [Nat.succ_eq_add_one, finExtractOne, Fin.isValue, Equiv.symm_trans_apply, finCongr_symm,
Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply, Equiv.coe_refl,
Sum.map_inl, id_eq, Equiv.sumAssoc_symm_apply_inl, Equiv.sumComm_symm, Equiv.sumComm_apply,
Sum.swap_inl, finSumFinEquiv_apply_right, finSumFinEquiv_apply_left, finCongr_apply]
ext
lemma extractOne_homToEquiv {n : } (i : Fin n.succ.succ)
{c1 c2 : Fin n.succ.succ → C} (σ : mk c1 ⟶ mk c2) :
Hom.toEquiv (extractOne i σ) = (finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)) := by
rfl
/-- The equivalence of types `Fin n.succ.succ ≃ (Fin 1 ⊕ Fin 1) ⊕ Fin n` extracting
the `i` and `(i.succAbove j)`. -/
def finExtractTwo {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
Fin n.succ.succ ≃ (Fin 1 ⊕ Fin 1) ⊕ Fin n :=
(finExtractOne i).trans <|
(Equiv.sumCongr (Equiv.refl (Fin 1)) (finExtractOne j)).trans <|
(Equiv.sumAssoc (Fin 1) (Fin 1) (Fin n)).symm
def extractTwo {n : } (i : Fin n.succ.succ.succ) (j : Fin n.succ.succ)
{c1 c2 : Fin n.succ.succ.succ → C} (σ : mk c1 ⟶ mk c2) :
mk (c1 ∘ Fin.succAbove ((Hom.toEquiv σ).symm i) ∘
Fin.succAbove (((Hom.toEquiv (extractOne i σ))).symm j)) ⟶
mk (c2 ∘ Fin.succAbove i ∘ Fin.succAbove j) :=
equivToHomEq (Equiv.refl _) (by simp) ≫ extractOne j (extractOne i σ) ≫
equivToHomEq (Equiv.refl _) (by simp)
lemma finExtractTwo_symm_inr {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
(finExtractTwo i j).symm ∘ Sum.inr = i.succAbove ∘ j.succAbove := by
rw [finExtractTwo]
ext1 x
simp
def extractTwoAux {n : } (i : Fin n.succ.succ.succ) (j : Fin n.succ.succ)
{c c1 : Fin n.succ.succ.succ → C} (σ : mk c ⟶ mk c1) :
mk ((c ∘ ⇑(finExtractTwo ((Hom.toEquiv σ).symm i) ((Hom.toEquiv (extractOne i σ)).symm j)).symm) ∘ Sum.inr) ⟶
mk ((c1 ∘ ⇑(finExtractTwo i j).symm) ∘ Sum.inr) :=
equivToHomEq (Equiv.refl _) (by simp) ≫ extractTwo i j σ ≫ equivToHomEq (Equiv.refl _) (by simp)
@[simp]
lemma finExtractTwo_symm_inr_apply {n : } (i : Fin n.succ.succ) (j : Fin n.succ) (x : Fin n) :
(finExtractTwo i j).symm (Sum.inr x) = i.succAbove (j.succAbove x) := by
rw [finExtractTwo]
simp
def extractTwoAux' {n : } (i : Fin n.succ.succ.succ) (j : Fin n.succ.succ)
{c c1 : Fin n.succ.succ.succ → C} (σ : mk c ⟶ mk c1) :
mk ((c ∘ ⇑(finExtractTwo ((Hom.toEquiv σ).symm i) ((Hom.toEquiv (extractOne i σ)).symm j)).symm) ∘ Sum.inl) ⟶
mk ((c1 ∘ ⇑(finExtractTwo i j).symm) ∘ Sum.inl) :=
equivToHomEq (Equiv.refl _) (by
intro x
simp
match x with
| Sum.inl 0=>
simp
have h1 := Hom.toEquiv_comp_inv_apply σ i
simpa using h1.symm
| Sum.inr 0 =>
simp
have h1 := Hom.toEquiv_comp_inv_apply σ (i.succAbove j)
simp at h1
rw [← h1]
congr
simp [finExtractOnePerm, finExtractOnPermHom]
erw [Equiv.apply_symm_apply]
rw [succsAbove_predAboveI]
rfl
simp
erw [Equiv.apply_eq_iff_eq]
exact (Fin.succAbove_ne i j).symm)
@[simp]
lemma finExtractTwo_symm_inl_inr_apply {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
(finExtractTwo i j).symm (Sum.inl (Sum.inr 0)) = i.succAbove j := by
rw [finExtractTwo]
simp
@[simp]
lemma finExtractTwo_symm_inl_inl_apply {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
(finExtractTwo i j).symm (Sum.inl (Sum.inl 0)) = i := by
rw [finExtractTwo]
lemma extractTwo_finExtractTwo {n : } (i : Fin n.succ.succ.succ) (j : Fin n.succ.succ)
{c c1 : Fin n.succ.succ.succ → C} (σ : mk c ⟶ mk c1) :
σ ≫ (equivToIso (HepLean.Fin.finExtractTwo i j)).hom ≫ (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom =
(equivToIso (HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i) (((Hom.toEquiv (extractOne i σ))).symm j))).hom
≫ (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i) (((Hom.toEquiv (extractOne i σ))).symm j)).symm)).hom
≫ ((extractTwoAux' i j σ) ⊗ (extractTwoAux i j σ)) := by
apply IndexNotation.OverColor.Hom.ext
ext x
simp [CategoryStruct.comp,extractTwoAux', extractTwoAux, mkSum,equivToIso, Hom.toIso]
change ((finExtractTwo i j) ((Hom.toEquiv σ) x)) = Sum.map id ((finExtractOnePerm ((finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
(finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ))))
(((finExtractTwo ((Hom.toEquiv σ).symm i)
((finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)) x))
simp [extractTwo]
obtain ⟨k, hk⟩ := (finExtractTwo ((Hom.toEquiv σ).symm i)
((finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)).symm.surjective x
subst hk
simp
match k with
| Sum.inl (Sum.inl 0) =>
simp
| Sum.inl (Sum.inr 0) =>
simp
have h1 : ((Hom.toEquiv σ) (Fin.succAbove
((Hom.toEquiv σ).symm i)
((finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))) =
i.succAbove j := by
simp [finExtractOnePerm, finExtractOnPermHom]
erw [Equiv.apply_symm_apply]
rw [succsAbove_predAboveI]
exact Equiv.apply_symm_apply (Hom.toEquiv σ) (i.succAbove j)
simp
erw [Equiv.apply_eq_iff_eq]
exact (Fin.succAbove_ne i j).symm
rw [h1]
erw [Equiv.apply_eq_iff_eq_symm_apply ]
simp
| Sum.inr x =>
simp
erw [Equiv.apply_eq_iff_eq_symm_apply ]
simp
simp [finExtractOnePerm, finExtractOnPermHom]
erw [Equiv.apply_symm_apply]
have h1 : (predAboveI i ((Hom.toEquiv σ)
(Fin.succAbove ((Hom.toEquiv σ).symm i)
(predAboveI ((Hom.toEquiv σ).symm i) ((Hom.toEquiv σ).symm (i.succAbove j)))))) = j := by
rw [succsAbove_predAboveI]
· erw [Equiv.apply_symm_apply]
simp
· simp
erw [Equiv.apply_eq_iff_eq]
exact (Fin.succAbove_ne i j).symm
erw [h1]
let y := (Hom.toEquiv σ) (Fin.succAbove ((Hom.toEquiv σ).symm i)
((predAboveI ((Hom.toEquiv σ).symm i) ((Hom.toEquiv σ).symm (i.succAbove j))).succAbove x))
change y = i.succAbove (j.succAbove (predAboveI j (predAboveI i y)))
have hy : i ≠ y := by
simp [y]
erw [← Equiv.symm_apply_eq ]
exact (Fin.succAbove_ne _ _).symm
rw [succsAbove_predAboveI, succsAbove_predAboveI]
exact hy
simp
rw [predAbove_eq_iff]
simp [y]
erw [← Equiv.symm_apply_eq ]
have h0 : (Hom.toEquiv σ).symm (i.succAbove j) =
Fin.succAbove ((Hom.toEquiv σ).symm i)
(predAboveI ((Hom.toEquiv σ).symm i) ((Hom.toEquiv σ).symm (i.succAbove j))) := by
rw [succsAbove_predAboveI]
simp
erw [Equiv.apply_eq_iff_eq]
exact (Fin.succAbove_ne i j).symm
by_contra hn
have hn' := hn.symm.trans h0
erw [ Fin.succAbove_right_injective.eq_iff] at hn'
exact Fin.succAbove_ne
(predAboveI ((Hom.toEquiv σ).symm i) ((Hom.toEquiv σ).symm (i.succAbove j))) x hn'
exact hy
/-- The isomorphism between a `Fin 1 ⊕ Fin 1 → C` satisfying the condition
`c (Sum.inr 0) = τ (c (Sum.inl 0))`

View file

@ -74,11 +74,11 @@ def contrIso {n : } (c : Fin n.succ.succ → S.C)
S.F.obj (OverColor.mk c) ≅ ((OverColor.Discrete.pairτ S.FDiscrete S.τ).obj
(Discrete.mk (c i))) ⊗
(OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
(S.F.mapIso (OverColor.equivToIso (OverColor.finExtractTwo i j))).trans <|
(S.F.mapIso (OverColor.mkSum (c ∘ (OverColor.finExtractTwo i j).symm))).trans <|
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractTwo i j))).trans <|
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractTwo i j).symm))).trans <|
(S.F.μIso _ _).symm.trans <| by
refine tensorIso ?_ (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
apply (S.F.mapIso (OverColor.mkSum (((c ∘ ⇑(OverColor.finExtractTwo i j).symm) ∘ Sum.inl)))).trans
apply (S.F.mapIso (OverColor.mkSum (((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)))).trans
apply (S.F.μIso _ _).symm.trans
apply tensorIso ?_ ?_
· symm
@ -96,6 +96,52 @@ def contrIso {n : } (c : Fin n.succ.succ → S.C)
fin_cases x
simp [h]
open OverColor
lemma perm_contr_cond {n : } {c : Fin n.succ.succ.succ → S.C} {c1 : Fin n.succ.succ.succ → S.C}
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ}
(h : c1 (i.succAbove j) = S.τ (c1 i)) (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
c (Fin.succAbove ((Hom.toEquiv σ).symm i) ((Hom.toEquiv (extractOne i σ)).symm j)) =
S.τ (c ((Hom.toEquiv σ).symm i)) := by
have h1 := Hom.toEquiv_comp_apply σ
simp at h1
rw [h1, h1]
simp
rw [← h]
congr
simp [HepLean.Fin.finExtractOnePerm, HepLean.Fin.finExtractOnPermHom]
erw [Equiv.apply_symm_apply]
rw [HepLean.Fin.succsAbove_predAboveI]
erw [Equiv.apply_symm_apply]
simp
erw [Equiv.apply_eq_iff_eq]
exact (Fin.succAbove_ne i j).symm
open OverColor in
lemma contrIso_comm_map {n : } {c c1 : Fin n.succ.succ.succ → S.C}
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ}
{h : c1 (i.succAbove j) = S.τ (c1 i)}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
(S.F.map σ) ≫ (S.contrIso c1 i j h).hom =
(S.contrIso c ((OverColor.Hom.toEquiv σ).symm i)
(((Hom.toEquiv (extractOne i σ))).symm j) (S.perm_contr_cond h σ)).hom ≫
(((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i)
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)) )) ⊗ (S.F.map (extractTwo i j σ))) := by
ext Z
simp
rw [contrIso]
simp
have h1 : ((S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ((S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ((S.F.map σ).hom Z)))
= ((S.F.map σ) ≫ (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom) ≫ (S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom)).hom Z := by
rfl
have h1' : ((S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ((S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ((S.F.map σ).hom Z)))
= ((S.F.map (σ ≫ (equivToIso (HepLean.Fin.finExtractTwo i j)).hom ≫ (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom))).hom Z := by
rw [h1]
simp
rw [h1']
rw [extractTwo_finExtractTwo]
simp
sorry
/--
`contrMap` is a function that takes a natural number `n`, a function `c` from
`Fin n.succ.succ` to `S.C`, an index `i` of type `Fin n.succ.succ`, an index `j` of type
@ -302,6 +348,33 @@ lemma neg_contr {n : } {c : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j
(t : TensorTree S c) : (contr i j h (neg t)).tensor = (neg (contr i j h t)).tensor := by
simp only [Nat.succ_eq_add_one, contr_tensor, neg_tensor, map_neg]
lemma neg_perm {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t : TensorTree S c) :
(perm σ (neg t)).tensor = (neg (perm σ t)).tensor := by
simp only [perm_tensor, neg_tensor, map_neg]
/-!
## Permutation lemmas
-/
lemma perm_contr {n : } {c : Fin n.succ.succ.succ → S.C} {c1 : Fin n.succ.succ.succ → S.C}
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ}
{h : c1 (i.succAbove j) = S.τ (c1 i)} (t : TensorTree S c)
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
((contr i j h (perm σ t))).tensor
= (perm (extractTwo i j σ) (contr ((OverColor.Hom.toEquiv σ).symm i)
(((Hom.toEquiv (extractOne i σ))).symm j) (perm_contr_cond h σ) t)).tensor := by
rw [contr_tensor, perm_tensor]
rw [TensorStruct.contrMap]
change (
(S.contr.app { as := c1 i } ⊗
𝟙 ((OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c1 ∘ i.succAbove ∘ j.succAbove)))) ≫
(λ_ ((OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c1 ∘ i.succAbove ∘ j.succAbove)))).hom).hom
((S.contrIso c1 i j h).hom.hom ((S.F.map σ).hom t.tensor)) = _
end
end TensorTree