feat: Start permutation contraction comm

This commit is contained in:
jstoobysmith 2024-10-17 17:11:06 +00:00
parent 672cc1ed8b
commit d542ae3903
4 changed files with 467 additions and 95 deletions

View file

@ -0,0 +1,245 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import Mathlib.LinearAlgebra.PiTensorProduct
import Mathlib.Tactic.Polyrith
import Mathlib.Tactic.Linarith
/-!
# Fin lemmas
The purpose of this file is to define some results Fin currently
in Mathlib.
At some point these should either be up-streamed to Mathlib or replaced with definitions already
in Mathlib.
-/
namespace HepLean.Fin
open Fin
variable {n : Nat}
def predAboveI (i x : Fin n.succ.succ) : Fin n.succ :=
if h : x.val < i.val then
⟨x.val, by omega⟩
else
⟨x.val - 1, by
by_cases hx : x = 0
· omega
· omega⟩
lemma predAboveI_self (i : Fin n.succ.succ) : predAboveI i i = ⟨i.val - 1, by omega⟩ := by
simp [predAboveI]
@[simp]
lemma predAboveI_succAbove (i : Fin n.succ.succ) (x : Fin n.succ) :
predAboveI i (Fin.succAbove i x) = x := by
simp [predAboveI, Fin.succAbove, Fin.ext_iff]
split_ifs
· rfl
· rename_i h1 h2
simp [Fin.lt_def] at h1 h2
omega
· rfl
lemma succsAbove_predAboveI {i x : Fin n.succ.succ} (h : i ≠ x) :
Fin.succAbove i (predAboveI i x) = x := by
simp [Fin.succAbove, predAboveI, Fin.ext_iff]
split_ifs
· rfl
· rename_i h1 h2
rw [Fin.lt_def] at h1 h2
simp
simp at h2
rw [Fin.le_def] at h2
omega
· rename_i h1 h2
simp at h1
rw [Fin.le_def] at h1
rw [Fin.lt_def] at h2
simp at h2
omega
· rename_i h1 h2
simp
simp at h1
rw [Fin.le_def] at h1
omega
lemma predAbove_eq_iff {i x : Fin n.succ.succ} (h : i ≠ x) (y : Fin n.succ) :
y = predAboveI i x ↔ i.succAbove y = x := by
apply Iff.intro
· intro h
subst h
rw [succsAbove_predAboveI h]
· intro h
rw [← h]
simp
lemma predAboveI_lt {i x : Fin n.succ.succ} (h : x.val < i.val) :
predAboveI i x = ⟨x.val, by omega⟩ := by
simp [predAboveI, h]
lemma predAboveI_ge {i x : Fin n.succ.succ} (h : i.val < x.val) :
predAboveI i x = ⟨x.val - 1, by omega⟩ := by
simp [predAboveI, h]
omega
/-- The equivalence between `Fin n.succ` and `Fin 1 ⊕ Fin n` extracting the
`i`th component. -/
def finExtractOne {n : } (i : Fin n.succ) : Fin n.succ ≃ Fin 1 ⊕ Fin n :=
(finCongr (by omega : n.succ = i + 1 + (n - i))).trans <|
finSumFinEquiv.symm.trans <|
(Equiv.sumCongr (finSumFinEquiv.symm.trans (Equiv.sumComm (Fin i) (Fin 1)))
(Equiv.refl (Fin (n-i)))).trans <|
(Equiv.sumAssoc (Fin 1) (Fin i) (Fin (n - i))).trans <|
Equiv.sumCongr (Equiv.refl (Fin 1)) (finSumFinEquiv.trans (finCongr (by omega)))
lemma finExtractOne_apply_eq {n : } (i : Fin n.succ) :
finExtractOne i i = Sum.inl 0 := by
simp [finExtractOne]
have h1 : Fin.cast (finExtractOne.proof_1 i) i = Fin.castAdd ((n - ↑i) ) ⟨i.1, lt_add_one i.1⟩ := by
simp [Fin.ext_iff]
rw [h1, finSumFinEquiv_symm_apply_castAdd]
simp
have h2 : @Fin.mk (↑i + 1) ↑i (lt_add_one i.1) = Fin.natAdd i.val 1 := by
simp [Fin.ext_iff]
rw [h2, finSumFinEquiv_symm_apply_natAdd]
rfl
lemma finExtractOne_symm_inr {n : } (i : Fin n.succ) :
(finExtractOne i).symm ∘ Sum.inr = i.succAbove := by
ext x
simp only [Nat.succ_eq_add_one, finExtractOne, Function.comp_apply, Equiv.symm_trans_apply,
finCongr_symm, Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply,
Equiv.coe_refl, Sum.map_inr, finCongr_apply, Fin.coe_cast]
change (finSumFinEquiv
(Sum.map (⇑(finSumFinEquiv.symm.trans (Equiv.sumComm (Fin ↑i) (Fin 1))).symm) id
((Equiv.sumAssoc (Fin 1) (Fin ↑i) (Fin (n - i))).symm
(Sum.inr (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)))))).val = _
by_cases hi : x.1 < i.1
· have h1 : (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)) =
Sum.inl ⟨x, hi⟩ := by
rw [← finSumFinEquiv_symm_apply_castAdd]
apply congrArg
ext
simp
rw [h1]
simp only [Nat.succ_eq_add_one, Equiv.sumAssoc_symm_apply_inr_inl, Sum.map_inl,
Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.sumComm_symm, Equiv.sumComm_apply,
Sum.swap_inr, finSumFinEquiv_apply_left, Fin.castAdd_mk]
rw [Fin.succAbove]
split
· rfl
rename_i hn
simp_all only [Nat.succ_eq_add_one, not_lt, Fin.le_def, Fin.coe_castSucc, Fin.val_succ,
self_eq_add_right, one_ne_zero]
omega
· have h1 : (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)) =
Sum.inr ⟨x - i, by omega⟩ := by
rw [← finSumFinEquiv_symm_apply_natAdd]
apply congrArg
ext
simp only [Nat.succ_eq_add_one, Fin.coe_cast, Fin.natAdd_mk]
omega
rw [h1, Fin.succAbove]
split
· rename_i hn
simp_all [Fin.lt_def]
simp only [Nat.succ_eq_add_one, Equiv.sumAssoc_symm_apply_inr_inr, Sum.map_inr, id_eq,
finSumFinEquiv_apply_right, Fin.natAdd_mk, Fin.val_succ]
omega
@[simp]
lemma finExtractOne_symm_inr_apply {n : } (i : Fin n.succ) (x : Fin n) :
(finExtractOne i).symm (Sum.inr x) = i.succAbove x := calc
_ = ((finExtractOne i).symm ∘ Sum.inr) x := rfl
_ = i.succAbove x := by rw [finExtractOne_symm_inr]
@[simp]
lemma finExtractOne_symm_inl_apply {n : } (i : Fin n.succ) :
(finExtractOne i).symm (Sum.inl 0) = i := by
simp only [Nat.succ_eq_add_one, finExtractOne, Fin.isValue, Equiv.symm_trans_apply, finCongr_symm,
Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply, Equiv.coe_refl,
Sum.map_inl, id_eq, Equiv.sumAssoc_symm_apply_inl, Equiv.sumComm_symm, Equiv.sumComm_apply,
Sum.swap_inl, finSumFinEquiv_apply_right, finSumFinEquiv_apply_left, finCongr_apply]
ext
rfl
def finExtractOnPermHom (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ) :
Fin n.succ → Fin n.succ := fun x => predAboveI (σ i) (σ ((finExtractOne i).symm (Sum.inr x)))
lemma finExtractOnPermHom_inv (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ) :
(finExtractOnPermHom (σ i) σ.symm) ∘ (finExtractOnPermHom i σ) = id := by
funext x
simp [finExtractOnPermHom]
by_cases h : σ (i.succAbove x) < σ i
· rw [predAboveI_lt h, Fin.succAbove_of_castSucc_lt]
· simp
· simp_all [Fin.lt_def]
have hσ : σ (i.succAbove x) ≠ σ i := by
simp only [Nat.succ_eq_add_one, ne_eq, EmbeddingLike.apply_eq_iff_eq]
exact Fin.succAbove_ne i x
have hn : σ i < σ (i.succAbove x) := by omega
rw [predAboveI_ge hn]
rw [Fin.succAbove_of_le_castSucc]
· simp
trans predAboveI i (σ.symm (σ (i.succAbove x)))
· congr
exact Nat.sub_add_cancel (Fin.lt_of_le_of_lt (Fin.zero_le (σ i)) hn)
simp
rw [Fin.le_def]
simp
omega
def finExtractOnePerm (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ) :
Fin n.succ ≃ Fin n.succ where
toFun x := finExtractOnPermHom i σ x
invFun x := finExtractOnPermHom (σ i) σ.symm x
left_inv x := by
simpa using congrFun (finExtractOnPermHom_inv i σ) x
right_inv x := by
simpa using congrFun (finExtractOnPermHom_inv (σ i) σ.symm) x
/-- The equivalence of types `Fin n.succ.succ ≃ (Fin 1 ⊕ Fin 1) ⊕ Fin n` extracting
the `i` and `(i.succAbove j)`. -/
def finExtractTwo {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
Fin n.succ.succ ≃ (Fin 1 ⊕ Fin 1) ⊕ Fin n :=
(finExtractOne i).trans <|
(Equiv.sumCongr (Equiv.refl (Fin 1)) (finExtractOne j)).trans <|
(Equiv.sumAssoc (Fin 1) (Fin 1) (Fin n)).symm
@[simp]
lemma finExtractTwo_apply_fst {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
finExtractTwo i j i = Sum.inl (Sum.inl 0) := by
simp [finExtractTwo]
simp [finExtractOne_apply_eq]
lemma finExtractTwo_symm_inr {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
(finExtractTwo i j).symm ∘ Sum.inr = i.succAbove ∘ j.succAbove := by
rw [finExtractTwo]
ext1 x
simp
@[simp]
lemma finExtractTwo_symm_inr_apply {n : } (i : Fin n.succ.succ) (j : Fin n.succ) (x : Fin n) :
(finExtractTwo i j).symm (Sum.inr x) = i.succAbove (j.succAbove x) := by
rw [finExtractTwo]
simp
@[simp]
lemma finExtractTwo_symm_inl_inr_apply {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
(finExtractTwo i j).symm (Sum.inl (Sum.inr 0)) = i.succAbove j := by
rw [finExtractTwo]
simp
@[simp]
lemma finExtractTwo_symm_inl_inl_apply {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
(finExtractTwo i j).symm (Sum.inl (Sum.inl 0)) = i := by
rw [finExtractTwo]
simp
end HepLean.Fin