Merge pull request #49 from HEPLean/LorentzAlgebra
Some minor adjustments to Lorentz algebra/group
This commit is contained in:
commit
d56874f7f9
4 changed files with 82 additions and 40 deletions
|
@ -60,6 +60,7 @@ import HepLean.SpaceTime.Basic
|
|||
import HepLean.SpaceTime.CliffordAlgebra
|
||||
import HepLean.SpaceTime.FourVelocity
|
||||
import HepLean.SpaceTime.LorentzAlgebra.Basic
|
||||
import HepLean.SpaceTime.LorentzAlgebra.Basis
|
||||
import HepLean.SpaceTime.LorentzGroup.Basic
|
||||
import HepLean.SpaceTime.LorentzGroup.Boosts
|
||||
import HepLean.SpaceTime.LorentzGroup.Orthochronous
|
||||
|
|
|
@ -13,6 +13,12 @@ import Mathlib.Analysis.InnerProductSpace.Adjoint
|
|||
/-!
|
||||
# The Lorentz Algebra
|
||||
|
||||
We define
|
||||
|
||||
- Define `lorentzAlgebra` via `LieAlgebra.Orthogonal.so'` as a subalgebra of
|
||||
`Matrix (Fin 4) (Fin 4) ℝ`.
|
||||
- In `mem_iff` prove that a matrix is in the Lorentz algebra if and only if it satisfies the
|
||||
condition `Aᵀ * η = - η * A`.
|
||||
|
||||
-/
|
||||
|
||||
|
@ -26,61 +32,45 @@ def lorentzAlgebra : LieSubalgebra ℝ (Matrix (Fin 4) (Fin 4) ℝ) :=
|
|||
LieSubalgebra.map (Matrix.reindexLieEquiv (@finSumFinEquiv 1 3)).toLieHom
|
||||
(LieAlgebra.Orthogonal.so' (Fin 1) (Fin 3) ℝ)
|
||||
|
||||
|
||||
namespace lorentzAlgebra
|
||||
|
||||
lemma transpose_eta (A : lorentzAlgebra) : A.1ᵀ * η = - η * A.1 := by
|
||||
have h := A.2
|
||||
simp [lorentzAlgebra] at h
|
||||
obtain ⟨B, hB1, hB2⟩ := h
|
||||
simp [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] at hB1
|
||||
obtain ⟨B, hB1, hB2⟩ := A.2
|
||||
apply (Equiv.apply_eq_iff_eq
|
||||
(Matrix.reindexAlgEquiv ℝ (@finSumFinEquiv 1 3).symm).toEquiv).mp
|
||||
erw [Matrix.reindexAlgEquiv_mul]
|
||||
simp only [Nat.reduceAdd, reindexAlgEquiv_apply, Equiv.symm_symm, AlgEquiv.toEquiv_eq_coe,
|
||||
EquivLike.coe_coe, map_neg, _root_.map_mul]
|
||||
rw [← Matrix.transpose_reindex]
|
||||
have h1 : (reindex finSumFinEquiv.symm finSumFinEquiv.symm) A = B :=
|
||||
(Equiv.apply_eq_iff_eq_symm_apply (reindex finSumFinEquiv.symm finSumFinEquiv.symm)).mpr
|
||||
(id hB2.symm)
|
||||
rw [h1]
|
||||
simp only [Nat.reduceAdd, AlgEquiv.toEquiv_eq_coe, EquivLike.coe_coe, _root_.map_mul,
|
||||
reindexAlgEquiv_apply, ← transpose_reindex, map_neg]
|
||||
rw [(Equiv.apply_eq_iff_eq_symm_apply (reindex finSumFinEquiv.symm finSumFinEquiv.symm)).mpr
|
||||
hB2.symm]
|
||||
erw [η_reindex]
|
||||
simpa using hB1
|
||||
simpa [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] using hB1
|
||||
|
||||
lemma mem_of_transpose_eta_eq_eta_mul_self {A : Matrix (Fin 4) (Fin 4) ℝ}
|
||||
(h : Aᵀ * η = - η * A) : A ∈ lorentzAlgebra := by
|
||||
simp [lorentzAlgebra]
|
||||
simp only [lorentzAlgebra, Nat.reduceAdd, LieSubalgebra.mem_map]
|
||||
use (Matrix.reindexLieEquiv (@finSumFinEquiv 1 3)).symm A
|
||||
apply And.intro
|
||||
swap
|
||||
change (reindexLieEquiv finSumFinEquiv) _ = _
|
||||
simp only [Nat.reduceAdd, reindexLieEquiv_symm, reindexLieEquiv_apply, reindex_apply,
|
||||
· have h1 := (Equiv.apply_eq_iff_eq
|
||||
(Matrix.reindexAlgEquiv ℝ (@finSumFinEquiv 1 3).symm).toEquiv).mpr h
|
||||
erw [Matrix.reindexAlgEquiv_mul] at h1
|
||||
simp only [Nat.reduceAdd, reindexAlgEquiv_apply, Equiv.symm_symm, AlgEquiv.toEquiv_eq_coe,
|
||||
EquivLike.coe_coe, map_neg, _root_.map_mul] at h1
|
||||
erw [η_reindex] at h1
|
||||
simpa [Nat.reduceAdd, reindexLieEquiv_symm, reindexLieEquiv_apply,
|
||||
LieAlgebra.Orthogonal.so', mem_skewAdjointMatricesLieSubalgebra,
|
||||
mem_skewAdjointMatricesSubmodule, IsSkewAdjoint, IsAdjointPair, mul_neg] using h1
|
||||
· change (reindexLieEquiv finSumFinEquiv) _ = _
|
||||
simp only [Nat.reduceAdd, reindexLieEquiv_symm, reindexLieEquiv_apply, reindex_apply,
|
||||
Equiv.symm_symm, submatrix_submatrix, Equiv.self_comp_symm, submatrix_id_id]
|
||||
simp only [Nat.reduceAdd, reindexLieEquiv_symm, reindexLieEquiv_apply,
|
||||
LieAlgebra.Orthogonal.so', mem_skewAdjointMatricesLieSubalgebra,
|
||||
mem_skewAdjointMatricesSubmodule, IsSkewAdjoint, IsAdjointPair, mul_neg]
|
||||
have h1 := (Equiv.apply_eq_iff_eq
|
||||
(Matrix.reindexAlgEquiv ℝ (@finSumFinEquiv 1 3).symm).toEquiv).mpr h
|
||||
erw [Matrix.reindexAlgEquiv_mul] at h1
|
||||
simp only [Nat.reduceAdd, reindexAlgEquiv_apply, Equiv.symm_symm, AlgEquiv.toEquiv_eq_coe,
|
||||
EquivLike.coe_coe, map_neg, _root_.map_mul] at h1
|
||||
erw [η_reindex] at h1
|
||||
simpa using h1
|
||||
|
||||
|
||||
lemma mem_iff {A : Matrix (Fin 4) (Fin 4) ℝ} : A ∈ lorentzAlgebra ↔
|
||||
Aᵀ * η = - η * A := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
exact transpose_eta ⟨A, h⟩
|
||||
· intro h
|
||||
exact mem_of_transpose_eta_eq_eta_mul_self h
|
||||
lemma mem_iff {A : Matrix (Fin 4) (Fin 4) ℝ} : A ∈ lorentzAlgebra ↔ Aᵀ * η = - η * A :=
|
||||
Iff.intro (fun h => transpose_eta ⟨A, h⟩) (fun h => mem_of_transpose_eta_eq_eta_mul_self h)
|
||||
|
||||
lemma mem_iff' (A : Matrix (Fin 4) (Fin 4) ℝ) : A ∈ lorentzAlgebra ↔ A = - η * Aᵀ * η := by
|
||||
apply Iff.intro
|
||||
intro h
|
||||
rw [mul_assoc, mem_iff.mp h]
|
||||
simp only [neg_mul, mul_neg, ← mul_assoc, η_sq, one_mul, neg_neg]
|
||||
simp_rw [mul_assoc, mem_iff.mp h, neg_mul, mul_neg, ← mul_assoc, η_sq, one_mul, neg_neg]
|
||||
intro h
|
||||
rw [mem_iff]
|
||||
nth_rewrite 2 [h]
|
||||
|
@ -109,7 +99,4 @@ instance spaceTimeAsLieModule : LieModule ℝ lorentzAlgebra spaceTime where
|
|||
rw [mulVec_smul]
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
end spaceTime
|
||||
|
|
26
HepLean/SpaceTime/LorentzAlgebra/Basis.lean
Normal file
26
HepLean/SpaceTime/LorentzAlgebra/Basis.lean
Normal file
|
@ -0,0 +1,26 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.LorentzAlgebra.Basic
|
||||
/-!
|
||||
# Basis of the Lorentz Algebra
|
||||
|
||||
We define the standard basis of the Lorentz group.
|
||||
|
||||
-/
|
||||
|
||||
namespace spaceTime
|
||||
|
||||
namespace lorentzAlgebra
|
||||
open Matrix
|
||||
|
||||
/-- The matrices which form the basis of the Lorentz algebra. -/
|
||||
@[simp]
|
||||
def σMat (μ ν : Fin 4) : Matrix (Fin 4) (Fin 4) ℝ := fun ρ δ ↦
|
||||
η^[ρ]_[μ] * η_[ν]_[δ] - η_[μ]_[δ] * η^[ρ]_[ν]
|
||||
|
||||
end lorentzAlgebra
|
||||
|
||||
end spaceTime
|
|
@ -29,6 +29,27 @@ open TensorProduct
|
|||
def η : Matrix (Fin 4) (Fin 4) ℝ := Matrix.reindex finSumFinEquiv finSumFinEquiv
|
||||
$ LieAlgebra.Orthogonal.indefiniteDiagonal (Fin 1) (Fin 3) ℝ
|
||||
|
||||
/-- The metric with lower indices. -/
|
||||
notation "η_[" μ "]_[" ν "]" => η μ ν
|
||||
|
||||
/-- The metric with upper indices. -/
|
||||
notation "η^[" μ "]^[" ν "]" => η μ ν
|
||||
|
||||
/-- The metric with one lower and one upper index. -/
|
||||
notation "η_[" μ "]^[" ν "]" => η_[μ]_[0] * η^[0]^[ν] + η_[μ]_[1] * η^[1]^[ν] +
|
||||
η_[μ]_[2] * η^[2]^[ν] + η_[μ]_[3] * η^[3]^[ν]
|
||||
|
||||
/-- The metric with one lower and one upper index. -/
|
||||
notation "η^[" μ "]_[" ν "]" => η^[μ]^[0] * η_[0]_[ν] + η^[μ]^[1] * η_[1]_[ν]
|
||||
+ η^[μ]^[2] * η_[2]_[ν] + η^[μ]^[3] * η_[3]_[ν]
|
||||
|
||||
/-- A matrix with one lower and one upper index. -/
|
||||
notation "["Λ"]^[" μ "]_[" ν "]" => (Λ : Matrix (Fin 4) (Fin 4) ℝ) μ ν
|
||||
|
||||
/-- A matrix with both lower indices. -/
|
||||
notation "["Λ"]_[" μ "]_[" ν "]" => ∑ ρ, η_[μ]_[ρ] * [Λ]^[ρ]_[ν]
|
||||
|
||||
|
||||
lemma η_block : η = Matrix.reindex finSumFinEquiv finSumFinEquiv (
|
||||
Matrix.fromBlocks (1 : Matrix (Fin 1) (Fin 1) ℝ) 0 0 (-1 : Matrix (Fin 3) (Fin 3) ℝ)) := by
|
||||
rw [η]
|
||||
|
@ -102,6 +123,13 @@ lemma η_mulVec (x : spaceTime) : η *ᵥ x = ![x 0, -x 1, -x 2, -x 3] := by
|
|||
fin_cases i <;>
|
||||
simp [vecHead, vecTail]
|
||||
|
||||
lemma η_as_diagonal : η = diagonal ![1, -1, -1, -1] := by
|
||||
rw [η_explicit]
|
||||
apply Matrix.ext
|
||||
intro μ ν
|
||||
fin_cases μ <;> fin_cases ν <;> rfl
|
||||
|
||||
|
||||
/-- Given a point in spaceTime `x` the linear map `y → x ⬝ᵥ (η *ᵥ y)`. -/
|
||||
@[simps!]
|
||||
def linearMapForSpaceTime (x : spaceTime) : spaceTime →ₗ[ℝ] ℝ where
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue