docs: ACCs
This commit is contained in:
parent
e9ce319101
commit
d582979013
2 changed files with 15 additions and 7 deletions
|
@ -63,10 +63,14 @@ def repCharges {n : ℕ} : Representation ℚ (PermGroup n) (SMCharges n).Charge
|
|||
erw [toSMSpecies_toSpecies_inv]
|
||||
rfl
|
||||
|
||||
/-- The species chages of a set of charges acted on by a family permutation is the permutation
|
||||
of those species charges with the corresponding part of the family permutation. -/
|
||||
lemma repCharges_toSpecies (f : PermGroup n) (S : (SMCharges n).Charges) (j : Fin 5) :
|
||||
toSpecies j (repCharges f S) = toSpecies j S ∘ f⁻¹ j := by
|
||||
erw [toSMSpecies_toSpecies_inv]
|
||||
|
||||
/-- The sum over every charge in any species to some power `m` is invariant under the group
|
||||
action. -/
|
||||
lemma toSpecies_sum_invariant (m : ℕ) (f : PermGroup n) (S : (SMCharges n).Charges) (j : Fin 5) :
|
||||
∑ i, ((fun a => a ^ m) ∘ toSpecies j (repCharges f S)) i =
|
||||
∑ i, ((fun a => a ^ m) ∘ toSpecies j S) i := by
|
||||
|
@ -74,31 +78,35 @@ lemma toSpecies_sum_invariant (m : ℕ) (f : PermGroup n) (S : (SMCharges n).Cha
|
|||
exact Fintype.sum_equiv (f⁻¹ j) (fun x => ((fun a => a ^ m) ∘ (toSpecies j) S ∘ ⇑(f⁻¹ j)) x)
|
||||
(fun x => ((fun a => a ^ m) ∘ (toSpecies j) S) x) (congrFun rfl)
|
||||
|
||||
/-- The gravitional anomaly equations is invariant under family permutations. -/
|
||||
lemma accGrav_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
|
||||
accGrav (repCharges f S) = accGrav S :=
|
||||
accGrav_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
accGrav (repCharges f S) = accGrav S := accGrav_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
|
||||
/-- The `SU(2)` anomaly equation is invariant under family permutations. -/
|
||||
lemma accSU2_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
|
||||
accSU2 (repCharges f S) = accSU2 S :=
|
||||
accSU2_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
accSU2 (repCharges f S) = accSU2 S := accSU2_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
|
||||
/-- The `SU(3)` anomaly equation is invariant under family permutations. -/
|
||||
lemma accSU3_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
|
||||
accSU3 (repCharges f S) = accSU3 S :=
|
||||
accSU3_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
|
||||
/-- The `Y²` anomaly equation is invariant under family permutations. -/
|
||||
lemma accYY_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
|
||||
accYY (repCharges f S) = accYY S :=
|
||||
accYY_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
|
||||
/-- The quadratic anomaly equation is invariant under family permutations. -/
|
||||
lemma accQuad_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
|
||||
accQuad (repCharges f S) = accQuad S :=
|
||||
accQuad_ext
|
||||
(toSpecies_sum_invariant 2 f S)
|
||||
|
||||
/-- The cubic anomaly equation is invariant under family permutations. -/
|
||||
lemma accCube_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
|
||||
accCube (repCharges f S) = accCube S :=
|
||||
accCube_ext (fun j => toSpecies_sum_invariant 3 f S j)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue