docs: ACCs

This commit is contained in:
jstoobysmith 2024-11-27 06:49:56 +00:00
parent e9ce319101
commit d582979013
2 changed files with 15 additions and 7 deletions

View file

@ -63,10 +63,14 @@ def repCharges {n : } : Representation (PermGroup n) (SMCharges n).Charge
erw [toSMSpecies_toSpecies_inv]
rfl
/-- The species chages of a set of charges acted on by a family permutation is the permutation
of those species charges with the corresponding part of the family permutation. -/
lemma repCharges_toSpecies (f : PermGroup n) (S : (SMCharges n).Charges) (j : Fin 5) :
toSpecies j (repCharges f S) = toSpecies j S ∘ f⁻¹ j := by
erw [toSMSpecies_toSpecies_inv]
/-- The sum over every charge in any species to some power `m` is invariant under the group
action. -/
lemma toSpecies_sum_invariant (m : ) (f : PermGroup n) (S : (SMCharges n).Charges) (j : Fin 5) :
∑ i, ((fun a => a ^ m) ∘ toSpecies j (repCharges f S)) i =
∑ i, ((fun a => a ^ m) ∘ toSpecies j S) i := by
@ -74,31 +78,35 @@ lemma toSpecies_sum_invariant (m : ) (f : PermGroup n) (S : (SMCharges n).Cha
exact Fintype.sum_equiv (f⁻¹ j) (fun x => ((fun a => a ^ m) ∘ (toSpecies j) S ∘ ⇑(f⁻¹ j)) x)
(fun x => ((fun a => a ^ m) ∘ (toSpecies j) S) x) (congrFun rfl)
/-- The gravitional anomaly equations is invariant under family permutations. -/
lemma accGrav_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
accGrav (repCharges f S) = accGrav S :=
accGrav_ext
(by simpa using toSpecies_sum_invariant 1 f S)
accGrav (repCharges f S) = accGrav S := accGrav_ext
(by simpa using toSpecies_sum_invariant 1 f S)
/-- The `SU(2)` anomaly equation is invariant under family permutations. -/
lemma accSU2_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
accSU2 (repCharges f S) = accSU2 S :=
accSU2_ext
(by simpa using toSpecies_sum_invariant 1 f S)
accSU2 (repCharges f S) = accSU2 S := accSU2_ext
(by simpa using toSpecies_sum_invariant 1 f S)
/-- The `SU(3)` anomaly equation is invariant under family permutations. -/
lemma accSU3_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
accSU3 (repCharges f S) = accSU3 S :=
accSU3_ext
(by simpa using toSpecies_sum_invariant 1 f S)
/-- The `Y²` anomaly equation is invariant under family permutations. -/
lemma accYY_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
accYY (repCharges f S) = accYY S :=
accYY_ext
(by simpa using toSpecies_sum_invariant 1 f S)
/-- The quadratic anomaly equation is invariant under family permutations. -/
lemma accQuad_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
accQuad (repCharges f S) = accQuad S :=
accQuad_ext
(toSpecies_sum_invariant 2 f S)
/-- The cubic anomaly equation is invariant under family permutations. -/
lemma accCube_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
accCube (repCharges f S) = accCube S :=
accCube_ext (fun j => toSpecies_sum_invariant 3 f S j)