Merge pull request #166 from HEPLean/informal_defs

feat: Create fermion namespace
This commit is contained in:
Joseph Tooby-Smith 2024-09-23 08:19:50 +00:00 committed by GitHub
commit d6ff081ffa
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -19,23 +19,25 @@ We define the vector spaces corresponding to different types of Weyl fermions.
Note: We should prevent casting between these vector spaces.
-/
informal_definition leftHandedWeylFermion where
namespace Fermion
informal_definition leftHandedWeyl where
math :≈ "The vector space ^2 carrying the fundamental representation of SL(2,C)."
physics :≈ "A Weyl fermion with indices ψ_a."
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
informal_definition rightHandedWeylFermion where
informal_definition rightHandedWeyl where
math :≈ "The vector space ^2 carrying the conjguate representation of SL(2,C)."
physics :≈ "A Weyl fermion with indices ψ_{dot a}."
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
informal_definition altLeftHandedWeylFermion where
informal_definition altLeftHandedWeyl where
math :≈ "The vector space ^2 carrying the representation of SL(2,C) given by
M → (M⁻¹)ᵀ."
physics :≈ "A Weyl fermion with indices ψ^a."
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
informal_definition altRightHandedWeylFermion where
informal_definition altRightHandedWeyl where
math :≈ "The vector space ^2 carrying the representation of SL(2,C) given by
M → (M⁻¹)^†."
physics :≈ "A Weyl fermion with indices ψ^{dot a}."
@ -47,25 +49,25 @@ informal_definition altRightHandedWeylFermion where
-/
informal_definition leftHandedWeylFermionAltEquiv where
math :≈ "The linear equiv between leftHandedWeylFermion and altLeftHandedWeylFermion given
by multiplying an element of rightHandedWeylFermion by the matrix `εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]`."
deps :≈ [`leftHandedWeylFermion, `altLeftHandedWeylFermion]
informal_definition leftHandedWeylAltEquiv where
math :≈ "The linear equiv between leftHandedWeyl and altLeftHandedWeyl given
by multiplying an element of rightHandedWeyl by the matrix `εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]`."
deps :≈ [``leftHandedWeyl, ``altLeftHandedWeyl]
informal_lemma leftHandedWeylFermionAltEquiv_equivariant where
math :≈ "The linear equiv leftHandedWeylFermionAltEquiv is equivariant with respect to the
action of SL(2,C) on leftHandedWeylFermion and altLeftHandedWeylFermion."
deps :≈ [`leftHandedWeylFermionAltEquiv]
informal_lemma leftHandedWeylAltEquiv_equivariant where
math :≈ "The linear equiv leftHandedWeylAltEquiv is equivariant with respect to the
action of SL(2,C) on leftHandedWeyl and altLeftHandedWeyl."
deps :≈ [``leftHandedWeylAltEquiv]
informal_definition rightHandedWeylFermionAltEquiv where
math :≈ "The linear equiv between rightHandedWeylFermion and altRightHandedWeylFermion given
by multiplying an element of rightHandedWeylFermion by the matrix `εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]`"
deps :≈ [`rightHandedWeylFermion, `altRightHandedWeylFermion]
informal_definition rightHandedWeylAltEquiv where
math :≈ "The linear equiv between rightHandedWeyl and altRightHandedWeyl given
by multiplying an element of rightHandedWeyl by the matrix `εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]`"
deps :≈ [``rightHandedWeyl, ``altRightHandedWeyl]
informal_lemma rightHandedWeylFermionAltEquiv_equivariant where
math :≈ "The linear equiv rightHandedWeylFermionAltEquiv is equivariant with respect to the
action of SL(2,C) on rightHandedWeylFermion and altRightHandedWeylFermion."
deps :≈ [`rightHandedWeylFermionAltEquiv]
informal_lemma rightHandedWeylAltEquiv_equivariant where
math :≈ "The linear equiv rightHandedWeylAltEquiv is equivariant with respect to the
action of SL(2,C) on rightHandedWeyl and altRightHandedWeyl."
deps :≈ [``rightHandedWeylAltEquiv]
/-!
@ -73,64 +75,66 @@ informal_lemma rightHandedWeylFermionAltEquiv_equivariant where
-/
informal_definition leftAltWeylFermionContraction where
math :≈ "The linear map from leftHandedWeylFermion ⊗ altLeftHandedWeylFermion to given by
summing over components of leftHandedWeylFermion and altLeftHandedWeylFermion in the
informal_definition leftAltWeylContraction where
math :≈ "The linear map from leftHandedWeyl ⊗ altLeftHandedWeyl to given by
summing over components of leftHandedWeyl and altLeftHandedWeyl in the
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a left-handed Weyl fermion with a right-handed Weyl fermion.
In index notation this is ψ_a φ^a."
deps :≈ [``leftHandedWeylFermion, ``altLeftHandedWeylFermion]
deps :≈ [``leftHandedWeyl, ``altLeftHandedWeyl]
informal_lemma leftAltWeylFermionContraction_invariant where
math :≈ "The contraction leftAltWeylFermionContraction is invariant with respect to
the action of SL(2,C) on leftHandedWeylFermion and altLeftHandedWeylFermion."
deps :≈ [``leftAltWeylFermionContraction]
informal_lemma leftAltWeylContraction_invariant where
math :≈ "The contraction leftAltWeylContraction is invariant with respect to
the action of SL(2,C) on leftHandedWeyl and altLeftHandedWeyl."
deps :≈ [``leftAltWeylContraction]
informal_definition altLeftWeylFermionContraction where
math :≈ "The linear map from altLeftHandedWeylFermion ⊗ leftHandedWeylFermion to given by
summing over components of altLeftHandedWeylFermion and leftHandedWeylFermion in the
informal_definition altLeftWeylContraction where
math :≈ "The linear map from altLeftHandedWeyl ⊗ leftHandedWeyl to given by
summing over components of altLeftHandedWeyl and leftHandedWeyl in the
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a left-handed Weyl fermion with a right-handed Weyl fermion.
In index notation this is φ^a ψ_a ."
deps :≈ [``leftHandedWeylFermion, ``altLeftHandedWeylFermion]
deps :≈ [``leftHandedWeyl, ``altLeftHandedWeyl]
informal_lemma leftAltWeylFermionContraction_symm_altLeftWeylFermionContraction where
math :≈ "The linear map altLeftWeylFermionContraction is leftAltWeylFermionContraction composed
informal_lemma leftAltWeylContraction_symm_altLeftWeylContraction where
math :≈ "The linear map altLeftWeylContraction is leftAltWeylContraction composed
with the braiding of the tensor product."
deps :≈ [``leftAltWeylFermionContraction, ``altLeftWeylFermionContraction]
deps :≈ [``leftAltWeylContraction, ``altLeftWeylContraction]
informal_lemma altLeftWeylFermionContraction_invariant where
math :≈ "The contraction altLeftWeylFermionContraction is invariant with respect to
the action of SL(2,C) on leftHandedWeylFermion and altLeftHandedWeylFermion."
deps :≈ [``altLeftWeylFermionContraction]
informal_lemma altLeftWeylContraction_invariant where
math :≈ "The contraction altLeftWeylContraction is invariant with respect to
the action of SL(2,C) on leftHandedWeyl and altLeftHandedWeyl."
deps :≈ [``altLeftWeylContraction]
informal_definition rightAltWeylFermionContraction where
math :≈ "The linear map from rightHandedWeylFermion ⊗ altRightHandedWeylFermion to given by
summing over components of rightHandedWeylFermion and altRightHandedWeylFermion in the
informal_definition rightAltWeylContraction where
math :≈ "The linear map from rightHandedWeyl ⊗ altRightHandedWeyl to given by
summing over components of rightHandedWeyl and altRightHandedWeyl in the
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion.
In index notation this is ψ_{dot a} φ^{dot a}."
deps :≈ [``rightHandedWeylFermion, ``altRightHandedWeylFermion]
deps :≈ [``rightHandedWeyl, ``altRightHandedWeyl]
informal_lemma rightAltWeylFermionContraction_invariant where
math :≈ "The contraction rightAltWeylFermionContraction is invariant with respect to
the action of SL(2,C) on rightHandedWeylFermion and altRightHandedWeylFermion."
deps :≈ [``rightAltWeylFermionContraction]
informal_lemma rightAltWeylContraction_invariant where
math :≈ "The contraction rightAltWeylContraction is invariant with respect to
the action of SL(2,C) on rightHandedWeyl and altRightHandedWeyl."
deps :≈ [``rightAltWeylContraction]
informal_definition altRightWeylFermionContraction where
math :≈ "The linear map from altRightHandedWeylFermion ⊗ rightHandedWeylFermion to given by
summing over components of altRightHandedWeylFermion and rightHandedWeylFermion in the
informal_definition altRightWeylContraction where
math :≈ "The linear map from altRightHandedWeyl ⊗ rightHandedWeyl to given by
summing over components of altRightHandedWeyl and rightHandedWeyl in the
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion.
In index notation this is φ^{dot a} ψ_{dot a}."
deps :≈ [``rightHandedWeylFermion, ``altRightHandedWeylFermion]
deps :≈ [``rightHandedWeyl, ``altRightHandedWeyl]
informal_lemma rightAltWeylFermionContraction_symm_altRightWeylFermionContraction where
math :≈ "The linear map altRightWeylFermionContraction is rightAltWeylFermionContraction composed
informal_lemma rightAltWeylContraction_symm_altRightWeylContraction where
math :≈ "The linear map altRightWeylContraction is rightAltWeylContraction composed
with the braiding of the tensor product."
deps :≈ [``rightAltWeylFermionContraction, ``altRightWeylFermionContraction]
deps :≈ [``rightAltWeylContraction, ``altRightWeylContraction]
informal_lemma altRightWeylFermionContraction_invariant where
math :≈ "The contraction altRightWeylFermionContraction is invariant with respect to
the action of SL(2,C) on rightHandedWeylFermion and altRightHandedWeylFermion."
deps :≈ [``altRightWeylFermionContraction]
informal_lemma altRightWeylContraction_invariant where
math :≈ "The contraction altRightWeylContraction is invariant with respect to
the action of SL(2,C) on rightHandedWeyl and altRightHandedWeyl."
deps :≈ [``altRightWeylContraction]
end Fermion