refactor: Golfing
This commit is contained in:
parent
fbda420da9
commit
d7b6cf7246
13 changed files with 73 additions and 117 deletions
|
@ -59,9 +59,7 @@ lemma mem_of_transpose_eta_eq_eta_mul_self {A : Matrix (Fin 4) (Fin 4) ℝ}
|
|||
simpa [Nat.reduceAdd, reindexLieEquiv_symm, reindexLieEquiv_apply,
|
||||
LieAlgebra.Orthogonal.so', mem_skewAdjointMatricesLieSubalgebra,
|
||||
mem_skewAdjointMatricesSubmodule, IsSkewAdjoint, IsAdjointPair, mul_neg] using h1
|
||||
· change (reindexLieEquiv finSumFinEquiv) _ = _
|
||||
simp only [Nat.reduceAdd, reindexLieEquiv_symm, reindexLieEquiv_apply, reindex_apply,
|
||||
Equiv.symm_symm, submatrix_submatrix, Equiv.self_comp_symm, submatrix_id_id]
|
||||
· exact LieEquiv.apply_symm_apply (reindexLieEquiv finSumFinEquiv) _
|
||||
|
||||
|
||||
lemma mem_iff {A : Matrix (Fin 4) (Fin 4) ℝ} : A ∈ lorentzAlgebra ↔ Aᵀ * η = - η * A :=
|
||||
|
|
|
@ -139,10 +139,9 @@ instance : Module.Finite ℝ lorentzAlgebra :=
|
|||
/-- The Lorentz algebra is 6-dimensional. -/
|
||||
theorem finrank_eq_six : FiniteDimensional.finrank ℝ lorentzAlgebra = 6 := by
|
||||
have h := Module.mk_finrank_eq_card_basis σBasis
|
||||
simp_all
|
||||
simp [FiniteDimensional.finrank]
|
||||
rw [h]
|
||||
simp only [Cardinal.toNat_ofNat]
|
||||
simp only [finrank_eq_rank, Cardinal.mk_fintype, Fintype.card_fin, Nat.cast_ofNat] at h
|
||||
exact FiniteDimensional.finrank_eq_of_rank_eq h
|
||||
|
||||
|
||||
end lorentzAlgebra
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue