refactor: Pauli matrices
This commit is contained in:
parent
7a50680794
commit
d7d435a1f8
7 changed files with 650 additions and 700 deletions
|
@ -386,66 +386,5 @@ lemma altRightMetric_expand_tree : {Fermion.altRightMetric | α β}ᵀ.tensor =
|
||||||
(fun | 0 => 1 | 1 => 0))))).tensor :=
|
(fun | 0 => 1 | 1 => 0))))).tensor :=
|
||||||
altRightMetric_expand
|
altRightMetric_expand
|
||||||
|
|
||||||
/-- The expansion of the Pauli matrices `σ^μ^a^{dot a}` in terms of basis vectors. -/
|
|
||||||
lemma pauliMatrix_basis_expand : {PauliMatrix.asConsTensor | μ α β}ᵀ.tensor =
|
|
||||||
basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 0 | 2 => 0)
|
|
||||||
+ basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 1 | 2 => 1)
|
|
||||||
+ basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 0 | 2 => 1)
|
|
||||||
+ basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 1 | 2 => 0)
|
|
||||||
- I • basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 0 | 2 => 1)
|
|
||||||
+ I • basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 1 | 2 => 0)
|
|
||||||
+ basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 0 | 2 => 0)
|
|
||||||
- basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
|
|
||||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constThreeNode_tensor,
|
|
||||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue]
|
|
||||||
erw [PauliMatrix.asConsTensor_apply_one, PauliMatrix.asTensor_expand]
|
|
||||||
simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
|
||||||
Action.FunctorCategoryEquivalence.functor_obj_obj, Action.instMonoidalCategory_tensorObj_V,
|
|
||||||
Fin.isValue, map_sub, map_add, _root_.map_smul]
|
|
||||||
congr 1
|
|
||||||
congr 1
|
|
||||||
congr 1
|
|
||||||
congr 1
|
|
||||||
congr 1
|
|
||||||
congr 1
|
|
||||||
congr 1
|
|
||||||
all_goals
|
|
||||||
erw [tripleIsoSep_tmul, basisVector]
|
|
||||||
apply congrArg
|
|
||||||
try apply congrArg
|
|
||||||
funext i
|
|
||||||
match i with
|
|
||||||
| (0 : Fin 3) =>
|
|
||||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.zero_eta, Fin.isValue, OverColor.mk_hom,
|
|
||||||
cons_val_zero, Fin.cases_zero]
|
|
||||||
change _ = Lorentz.complexContrBasisFin4 _
|
|
||||||
simp only [Fin.isValue, Lorentz.complexContrBasisFin4, Basis.coe_reindex, Function.comp_apply]
|
|
||||||
rfl
|
|
||||||
| (1 : Fin 3) => rfl
|
|
||||||
| (2 : Fin 3) => rfl
|
|
||||||
|
|
||||||
lemma pauliMatrix_basis_expand_tree : {PauliMatrix.asConsTensor | μ α β}ᵀ.tensor =
|
|
||||||
(TensorTree.add (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 0 | 2 => 0))) <|
|
|
||||||
TensorTree.add (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 1 | 2 => 1))) <|
|
|
||||||
TensorTree.add (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 0 | 2 => 1))) <|
|
|
||||||
TensorTree.add (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 1 | 2 => 0))) <|
|
|
||||||
TensorTree.add (smul (-I) (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <|
|
|
||||||
TensorTree.add (smul I (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <|
|
|
||||||
TensorTree.add (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 0 | 2 => 0))) <|
|
|
||||||
(smul (-1) (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR]
|
|
||||||
(fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by
|
|
||||||
rw [pauliMatrix_basis_expand]
|
|
||||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor,
|
|
||||||
smul_tensor, neg_smul, one_smul]
|
|
||||||
rfl
|
|
||||||
|
|
||||||
end complexLorentzTensor
|
end complexLorentzTensor
|
||||||
end
|
end
|
||||||
|
|
|
@ -1,287 +0,0 @@
|
||||||
/-
|
|
||||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|
||||||
Released under Apache 2.0 license as described in the file LICENSE.
|
|
||||||
Authors: Joseph Tooby-Smith
|
|
||||||
-/
|
|
||||||
import HepLean.Tensors.Tree.Elab
|
|
||||||
import HepLean.Tensors.ComplexLorentz.Basic
|
|
||||||
import Mathlib.LinearAlgebra.TensorProduct.Basis
|
|
||||||
import HepLean.Tensors.Tree.NodeIdentities.Basic
|
|
||||||
import HepLean.Tensors.Tree.NodeIdentities.PermProd
|
|
||||||
import HepLean.Tensors.Tree.NodeIdentities.PermContr
|
|
||||||
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
|
|
||||||
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
|
|
||||||
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
|
|
||||||
import HepLean.Tensors.ComplexLorentz.Basis
|
|
||||||
/-!
|
|
||||||
|
|
||||||
## Basis trees
|
|
||||||
|
|
||||||
When contracting e.g. Pauli matrices with other tensors, it is sometimes convienent
|
|
||||||
to rewrite the contraction in terms of a basis.
|
|
||||||
|
|
||||||
The lemmas in this file allow us to do this.
|
|
||||||
-/
|
|
||||||
open IndexNotation
|
|
||||||
open CategoryTheory
|
|
||||||
open MonoidalCategory
|
|
||||||
open Matrix
|
|
||||||
open MatrixGroups
|
|
||||||
open Complex
|
|
||||||
open TensorProduct
|
|
||||||
open IndexNotation
|
|
||||||
open CategoryTheory
|
|
||||||
open TensorTree
|
|
||||||
open OverColor.Discrete
|
|
||||||
|
|
||||||
noncomputable section
|
|
||||||
|
|
||||||
namespace complexLorentzTensor
|
|
||||||
open Fermion
|
|
||||||
|
|
||||||
/-!
|
|
||||||
|
|
||||||
## Tree expansions for Pauli matrices.
|
|
||||||
|
|
||||||
-/
|
|
||||||
|
|
||||||
/-- The map to colors one gets when contracting with Pauli matrices on the right. -/
|
|
||||||
abbrev pauliMatrixContrMap {n : ℕ} (c : Fin n → complexLorentzTensor.C) :=
|
|
||||||
(Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm)
|
|
||||||
|
|
||||||
lemma prod_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
|
||||||
(t : TensorTree complexLorentzTensor c) :
|
|
||||||
(TensorTree.prod t (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
|
||||||
PauliMatrix.asConsTensor)).tensor = (((t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
|
|
||||||
(((t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
|
|
||||||
(((t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
|
|
||||||
(((t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
|
|
||||||
((TensorTree.smul (-I) ((t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
|
|
||||||
((TensorTree.smul I ((t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
|
|
||||||
((t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0))).add
|
|
||||||
(TensorTree.smul (-1) (t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR]
|
|
||||||
fun | 0 => 3 | 1 => 1 | 2 => 1))))))))))).tensor := by
|
|
||||||
rw [prod_tensor_eq_snd <| pauliMatrix_basis_expand_tree]
|
|
||||||
rw [prod_add _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| prod_add _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
prod_add _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
|
||||||
/- Moving smuls. -/
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd<| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| prod_smul _ _ _]
|
|
||||||
rfl
|
|
||||||
|
|
||||||
lemma contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
|
||||||
(t : TensorTree complexLorentzTensor c) (i : Fin (n + 3)) (j : Fin (n +2))
|
|
||||||
(h : (pauliMatrixContrMap c) (i.succAbove j) =
|
|
||||||
complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) :
|
|
||||||
(contr i j h (TensorTree.prod t
|
|
||||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
|
||||||
PauliMatrix.asConsTensor))).tensor =
|
|
||||||
((contr i j h (t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
|
|
||||||
((contr i j h (t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
|
|
||||||
((contr i j h (t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
|
|
||||||
((contr i j h (t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
|
|
||||||
((TensorTree.smul (-I) (contr i j h (t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
|
|
||||||
((TensorTree.smul I (contr i j h (t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
|
|
||||||
((contr i j h (t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0)))).add
|
|
||||||
(TensorTree.smul (-1) (contr i j h (t.prod (tensorNode
|
|
||||||
(basisVector ![Color.up, Color.upL, Color.upR]
|
|
||||||
fun | 0 => 3 | 1 => 1 | 2 => 1)))))))))))).tensor := by
|
|
||||||
rw [contr_tensor_eq <| prod_pauliMatrix_basis_tree_expand _]
|
|
||||||
/- Moving contr over add. -/
|
|
||||||
rw [contr_add]
|
|
||||||
rw [add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
/- Moving contr over smul. -/
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
contr_smul _ _]
|
|
||||||
|
|
||||||
lemma basis_contr_pauliMatrix_basis_tree_expand' {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
|
||||||
(i : Fin (n + 3)) (j : Fin (n +2))
|
|
||||||
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
|
|
||||||
((pauliMatrixContrMap c) i))
|
|
||||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
|
||||||
let c' := Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm
|
|
||||||
let b' (i1 i2 i3 : Fin 4) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
|
|
||||||
((HepLean.PiTensorProduct.elimPureTensor b (fun | 0 => i1 | 1 => i2 | 2 => i3))
|
|
||||||
(finSumFinEquiv.symm i))
|
|
||||||
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
|
|
||||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
|
||||||
PauliMatrix.asConsTensor))).tensor = ((contr i j h ((tensorNode
|
|
||||||
(basisVector c' (b' 0 0 0))))).add
|
|
||||||
((contr i j h ((tensorNode (basisVector c' (b' 0 1 1))))).add
|
|
||||||
((contr i j h ((tensorNode (basisVector c' (b' 1 0 1))))).add
|
|
||||||
((contr i j h ((tensorNode (basisVector c' (b' 1 1 0))))).add
|
|
||||||
((TensorTree.smul (-I) (contr i j h ((tensorNode (basisVector c' (b' 2 0 1)))))).add
|
|
||||||
((TensorTree.smul I (contr i j h ((tensorNode (basisVector c' (b' 2 1 0)))))).add
|
|
||||||
((contr i j h ((tensorNode (basisVector c' (b' 3 0 0))))).add
|
|
||||||
(TensorTree.smul (-1) (contr i j h ((tensorNode
|
|
||||||
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
|
|
||||||
rw [contr_pauliMatrix_basis_tree_expand]
|
|
||||||
/- Product of basis vectors . -/
|
|
||||||
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
|
|
||||||
<| prod_basisVector_tree _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
|
|
||||||
<| contr_tensor_eq <| prod_basisVector_tree _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
|
|
||||||
<| prod_basisVector_tree _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
|
|
||||||
<| prod_basisVector_tree _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
|
|
||||||
<| contr_tensor_eq <| prod_basisVector_tree _ _]
|
|
||||||
rfl
|
|
||||||
|
|
||||||
/-- The map to color which appears when contracting a basis vector with
|
|
||||||
puali matrices. -/
|
|
||||||
def pauliMatrixBasisProdMap
|
|
||||||
{n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
|
||||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) (i1 i2 i3 : Fin 4) :
|
|
||||||
(i : Fin (n + (Nat.succ 0).succ.succ)) →
|
|
||||||
Fin (complexLorentzTensor.repDim (Sum.elim c ![Color.up, Color.upL, Color.upR]
|
|
||||||
(finSumFinEquiv.symm i))) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
|
|
||||||
((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3))
|
|
||||||
(finSumFinEquiv.symm i))
|
|
||||||
|
|
||||||
/-- The new basis vectors which appear when contracting pauli matrices with
|
|
||||||
basis vectors. -/
|
|
||||||
def basisVectorContrPauli {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
|
||||||
(i : Fin (n + 3)) (j : Fin (n +2))
|
|
||||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
|
|
||||||
(i1 i2 i3 : Fin 4) :=
|
|
||||||
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
|
|
||||||
∘ Fin.succAbove i ∘ Fin.succAbove j
|
|
||||||
let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3)
|
|
||||||
(i.succAbove (j.succAbove k))
|
|
||||||
basisVector c' (b' i1 i2 i3)
|
|
||||||
|
|
||||||
lemma basis_contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
|
||||||
(i : Fin (n + 3)) (j : Fin (n +2))
|
|
||||||
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
|
|
||||||
((pauliMatrixContrMap c) i))
|
|
||||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
|
||||||
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
|
|
||||||
∘ Fin.succAbove i ∘ Fin.succAbove j
|
|
||||||
let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3)
|
|
||||||
(i.succAbove (j.succAbove k))
|
|
||||||
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
|
|
||||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
|
||||||
PauliMatrix.asConsTensor))).tensor =
|
|
||||||
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 0 0))
|
|
||||||
(tensorNode (basisVector c' (b' 0 0 0))))).add
|
|
||||||
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 1 1))
|
|
||||||
(tensorNode (basisVector c' (b' 0 1 1))))).add
|
|
||||||
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 0 1))
|
|
||||||
(tensorNode (basisVector c' (b' 1 0 1))))).add
|
|
||||||
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 1 0))
|
|
||||||
(tensorNode (basisVector c' (b' 1 1 0))))).add
|
|
||||||
((TensorTree.smul (-I) ((TensorTree.smul
|
|
||||||
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1))
|
|
||||||
(tensorNode (basisVector c' (b' 2 0 1)))))).add
|
|
||||||
((TensorTree.smul I ((TensorTree.smul
|
|
||||||
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0))
|
|
||||||
(tensorNode (basisVector c' (b' 2 1 0)))))).add
|
|
||||||
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 0 0))
|
|
||||||
(tensorNode (basisVector c' (b' 3 0 0))))).add
|
|
||||||
(TensorTree.smul (-1) ((TensorTree.smul
|
|
||||||
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) (tensorNode
|
|
||||||
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
|
|
||||||
rw [basis_contr_pauliMatrix_basis_tree_expand']
|
|
||||||
/- Contracting basis vectors. -/
|
|
||||||
rw [add_tensor_eq_fst <| contr_basisVector_tree _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
|
|
||||||
<| contr_basisVector_tree _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_fst <| contr_basisVector_tree _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
|
|
||||||
<| contr_basisVector_tree _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
smul_tensor_eq <| contr_basisVector_tree _]
|
|
||||||
rfl
|
|
||||||
|
|
||||||
lemma basis_contr_pauliMatrix_basis_tree_expand_tensor {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
|
||||||
(i : Fin (n + 3)) (j : Fin (n +2))
|
|
||||||
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
|
|
||||||
((pauliMatrixContrMap c) i))
|
|
||||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
|
||||||
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
|
|
||||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
|
||||||
PauliMatrix.asConsTensor))).tensor =
|
|
||||||
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 0 0)) •
|
|
||||||
(basisVectorContrPauli i j b 0 0 0)
|
|
||||||
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 1 1)) •
|
|
||||||
(basisVectorContrPauli i j b 0 1 1)
|
|
||||||
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 0 1)) •
|
|
||||||
(basisVectorContrPauli i j b 1 0 1)
|
|
||||||
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 1 0)) •
|
|
||||||
(basisVectorContrPauli i j b 1 1 0)
|
|
||||||
+ (-I) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1)) •
|
|
||||||
(basisVectorContrPauli i j b 2 0 1)
|
|
||||||
+ I • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0)) •
|
|
||||||
(basisVectorContrPauli i j b 2 1 0)
|
|
||||||
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 0 0)) •
|
|
||||||
(basisVectorContrPauli i j b 3 0 0)
|
|
||||||
+ (-1 : ℂ) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) •
|
|
||||||
(basisVectorContrPauli i j b 3 1 1) := by
|
|
||||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
|
||||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, cons_val_one, head_cons, Fin.val_zero,
|
|
||||||
Nat.cast_zero, cons_val_two, Fin.val_one, Nat.cast_one, add_tensor, smul_tensor,
|
|
||||||
tensorNode_tensor, neg_smul, one_smul, Int.reduceNeg]
|
|
||||||
simp_all only [Function.comp_apply, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue]
|
|
||||||
rfl
|
|
||||||
|
|
||||||
end complexLorentzTensor
|
|
||||||
|
|
||||||
end
|
|
|
@ -3,7 +3,7 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||||
Released under Apache 2.0 license as described in the file LICENSE.
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
Authors: Joseph Tooby-Smith
|
Authors: Joseph Tooby-Smith
|
||||||
-/
|
-/
|
||||||
import HepLean.Tensors.ComplexLorentz.BasisTrees
|
import HepLean.Tensors.ComplexLorentz.Basis
|
||||||
/-!
|
/-!
|
||||||
|
|
||||||
## Lemmas related to complex Lorentz tensors.
|
## Lemmas related to complex Lorentz tensors.
|
||||||
|
|
|
@ -1,338 +0,0 @@
|
||||||
/-
|
|
||||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|
||||||
Released under Apache 2.0 license as described in the file LICENSE.
|
|
||||||
Authors: Joseph Tooby-Smith
|
|
||||||
-/
|
|
||||||
import HepLean.Tensors.ComplexLorentz.BasisTrees
|
|
||||||
/-!
|
|
||||||
|
|
||||||
## Lowering indices of Pauli matrices.
|
|
||||||
|
|
||||||
-/
|
|
||||||
open IndexNotation
|
|
||||||
open CategoryTheory
|
|
||||||
open MonoidalCategory
|
|
||||||
open Matrix
|
|
||||||
open MatrixGroups
|
|
||||||
open Complex
|
|
||||||
open TensorProduct
|
|
||||||
open IndexNotation
|
|
||||||
open CategoryTheory
|
|
||||||
open TensorTree
|
|
||||||
open OverColor.Discrete
|
|
||||||
noncomputable section
|
|
||||||
|
|
||||||
namespace Fermion
|
|
||||||
open complexLorentzTensor
|
|
||||||
|
|
||||||
/-- The pauli matrices as `σ_μ^α^{dot β}`. -/
|
|
||||||
def pauliCo := {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | ν α β}ᵀ.tensor
|
|
||||||
|
|
||||||
lemma tensorNode_pauliCo : (tensorNode pauliCo).tensor =
|
|
||||||
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | ν α β}ᵀ.tensor := by
|
|
||||||
rw [pauliCo]
|
|
||||||
rfl
|
|
||||||
|
|
||||||
/-- The map to color one gets when lowering the indices of pauli matrices. -/
|
|
||||||
def pauliCoMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘
|
|
||||||
⇑finSumFinEquiv.symm) ∘ Fin.succAbove 1 ∘ Fin.succAbove 1)
|
|
||||||
|
|
||||||
lemma pauliMatrix_contr_down_0 :
|
|
||||||
(contr 1 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
|
|
||||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
|
||||||
PauliMatrix.asConsTensor)))).tensor
|
|
||||||
= basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
|
|
||||||
+ basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1) := by
|
|
||||||
conv =>
|
|
||||||
lhs
|
|
||||||
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
|
|
||||||
rw [contrBasisVectorMul_pos (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
|
||||||
rw [contrBasisVectorMul_pos (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; lhs; rhs; rhs; lhs
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; rhs; rhs; lhs
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; rhs; lhs;
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; rhs; rhs; lhs;
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs
|
|
||||||
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
|
|
||||||
congr 1
|
|
||||||
· rw [basisVectorContrPauli]
|
|
||||||
congr 1
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
· rw [basisVectorContrPauli]
|
|
||||||
congr 1
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
|
|
||||||
lemma pauliMatrix_contr_down_1 :
|
|
||||||
{(basisVector ![Color.down, Color.down] fun x => 1) | ν μ ⊗
|
|
||||||
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
|
||||||
= basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
|
|
||||||
+ basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by
|
|
||||||
conv =>
|
|
||||||
lhs
|
|
||||||
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
|
||||||
rw [contrBasisVectorMul_pos (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
|
||||||
rw [contrBasisVectorMul_pos (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; lhs; rhs; rhs; lhs
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; rhs; rhs; lhs
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; rhs; lhs;
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; rhs; rhs; lhs;
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs
|
|
||||||
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
|
|
||||||
congr 1
|
|
||||||
· rw [basisVectorContrPauli]
|
|
||||||
congr 1
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
· rw [basisVectorContrPauli]
|
|
||||||
congr 1
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
|
|
||||||
lemma pauliMatrix_contr_down_2 :
|
|
||||||
{(basisVector ![Color.down, Color.down] fun x => 2) | μ ν ⊗
|
|
||||||
PauliMatrix.asConsTensor | ν α β}ᵀ.tensor
|
|
||||||
= (- I) • basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
|
|
||||||
+ (I) • basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0) := by
|
|
||||||
conv =>
|
|
||||||
lhs
|
|
||||||
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; lhs; rhs; rhs; lhs
|
|
||||||
rw [contrBasisVectorMul_pos (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; rhs; rhs; lhs
|
|
||||||
rw [contrBasisVectorMul_pos (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; rhs; lhs;
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; rhs; rhs; lhs;
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs
|
|
||||||
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
|
|
||||||
congr 1
|
|
||||||
· rw [basisVectorContrPauli]
|
|
||||||
congr 2
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
· rw [basisVectorContrPauli]
|
|
||||||
congr 2
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
|
|
||||||
lemma pauliMatrix_contr_down_3 :
|
|
||||||
{(basisVector ![Color.down, Color.down] fun x => 3) | μ ν ⊗
|
|
||||||
PauliMatrix.asConsTensor | ν α β}ᵀ.tensor
|
|
||||||
= basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
|
|
||||||
+ (- 1 : ℂ) • basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
|
|
||||||
conv =>
|
|
||||||
lhs
|
|
||||||
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; lhs; rhs; rhs; lhs
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; lhs; rhs; rhs; lhs
|
|
||||||
rw [contrBasisVectorMul_neg (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs; rhs; lhs;
|
|
||||||
rw [contrBasisVectorMul_pos (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs; rhs; rhs; lhs;
|
|
||||||
rw [contrBasisVectorMul_pos (by decide)]
|
|
||||||
conv =>
|
|
||||||
lhs
|
|
||||||
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
|
|
||||||
congr 1
|
|
||||||
· rw [basisVectorContrPauli]
|
|
||||||
congr 1
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
· rw [basisVectorContrPauli]
|
|
||||||
congr 1
|
|
||||||
congr 1
|
|
||||||
funext k
|
|
||||||
fin_cases k <;> rfl
|
|
||||||
|
|
||||||
lemma pauliCo_basis_expand : pauliCo
|
|
||||||
= basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
|
|
||||||
+ basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1)
|
|
||||||
- basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
|
|
||||||
- basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0)
|
|
||||||
+ I • basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
|
|
||||||
- I • basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0)
|
|
||||||
- basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
|
|
||||||
+ basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
|
|
||||||
conv =>
|
|
||||||
lhs
|
|
||||||
rw [pauliCo]
|
|
||||||
rw [contr_tensor_eq <| prod_tensor_eq_fst <| coMetric_basis_expand_tree]
|
|
||||||
/- Moving the prod through additions. -/
|
|
||||||
rw [contr_tensor_eq <| add_prod _ _ _]
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _]
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
|
||||||
/- Moving the prod through smuls. -/
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
|
|
||||||
<| smul_prod _ _ _]
|
|
||||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
|
||||||
<| smul_prod _ _ _]
|
|
||||||
/- Moving contraction through addition. -/
|
|
||||||
rw [contr_add]
|
|
||||||
rw [add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
|
||||||
/- Moving contraction through smul. -/
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_smul _ _]
|
|
||||||
simp only [tensorNode_tensor, add_tensor, smul_tensor]
|
|
||||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, neg_smul, one_smul]
|
|
||||||
conv =>
|
|
||||||
lhs; lhs;
|
|
||||||
rw [pauliMatrix_contr_down_0]
|
|
||||||
conv =>
|
|
||||||
lhs; rhs; lhs; rhs;
|
|
||||||
rw [pauliMatrix_contr_down_1]
|
|
||||||
conv =>
|
|
||||||
lhs; rhs; rhs; lhs; rhs;
|
|
||||||
rw [pauliMatrix_contr_down_2]
|
|
||||||
conv =>
|
|
||||||
lhs; rhs; rhs; rhs; rhs;
|
|
||||||
rw [pauliMatrix_contr_down_3]
|
|
||||||
simp only [neg_smul, one_smul]
|
|
||||||
abel
|
|
||||||
|
|
||||||
lemma pauliCo_basis_expand_tree : pauliCo
|
|
||||||
= (TensorTree.add (tensorNode
|
|
||||||
(basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0))) <|
|
|
||||||
TensorTree.add (tensorNode
|
|
||||||
(basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1))) <|
|
|
||||||
TensorTree.add (TensorTree.smul (-1) (tensorNode
|
|
||||||
(basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))) <|
|
|
||||||
TensorTree.add (TensorTree.smul (-1) (tensorNode
|
|
||||||
(basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))) <|
|
|
||||||
TensorTree.add (TensorTree.smul I (tensorNode
|
|
||||||
(basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <|
|
|
||||||
TensorTree.add (TensorTree.smul (-I) (tensorNode
|
|
||||||
(basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <|
|
|
||||||
TensorTree.add (TensorTree.smul (-1) (tensorNode
|
|
||||||
(basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0)))) <|
|
|
||||||
(tensorNode (basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1)))).tensor := by
|
|
||||||
rw [pauliCo_basis_expand]
|
|
||||||
simp only [Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor, smul_tensor, neg_smul,
|
|
||||||
one_smul]
|
|
||||||
rfl
|
|
||||||
|
|
||||||
lemma pauliCo_prod_basis_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
|
||||||
(t : TensorTree complexLorentzTensor c) :
|
|
||||||
(prod (tensorNode pauliCo) t).tensor =
|
|
||||||
(((tensorNode
|
|
||||||
(basisVector pauliCoMap fun | 0 => 0 | 1 => 0 | 2 => 0)).prod t).add
|
|
||||||
(((tensorNode
|
|
||||||
(basisVector pauliCoMap fun | 0 => 0 | 1 => 1 | 2 => 1)).prod t).add
|
|
||||||
((TensorTree.smul (-1) ((tensorNode
|
|
||||||
(basisVector pauliCoMap fun | 0 => 1 | 1 => 0 | 2 => 1)).prod t)).add
|
|
||||||
((TensorTree.smul (-1) ((tensorNode
|
|
||||||
(basisVector pauliCoMap fun | 0 => 1 | 1 => 1 | 2 => 0)).prod t)).add
|
|
||||||
((TensorTree.smul I ((tensorNode
|
|
||||||
(basisVector pauliCoMap fun | 0 => 2 | 1 => 0 | 2 => 1)).prod t)).add
|
|
||||||
((TensorTree.smul (-I) ((tensorNode
|
|
||||||
(basisVector pauliCoMap fun | 0 => 2 | 1 => 1 | 2 => 0)).prod t)).add
|
|
||||||
((TensorTree.smul (-1) ((tensorNode
|
|
||||||
(basisVector pauliCoMap fun | 0 => 3 | 1 => 0 | 2 => 0)).prod t)).add
|
|
||||||
((tensorNode
|
|
||||||
(basisVector pauliCoMap fun | 0 => 3 | 1 => 1 | 2 => 1)).prod
|
|
||||||
t)))))))).tensor := by
|
|
||||||
rw [prod_tensor_eq_fst <| tensorNode_pauliCo]
|
|
||||||
rw [prod_tensor_eq_fst <| pauliCo_basis_expand_tree]
|
|
||||||
/- Moving the prod through additions. -/
|
|
||||||
rw [add_prod _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_prod _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_prod _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_prod _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
|
||||||
/- Moving the prod through smuls. -/
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
|
||||||
smul_prod _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_fst <| smul_prod _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
|
||||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
|
||||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
|
||||||
smul_prod _ _ _]
|
|
||||||
|
|
||||||
end Fermion
|
|
|
@ -41,7 +41,7 @@ open Fermion
|
||||||
def pauliContr := {PauliMatrix.asConsTensor | ν α β}ᵀ.tensor
|
def pauliContr := {PauliMatrix.asConsTensor | ν α β}ᵀ.tensor
|
||||||
|
|
||||||
/-- The Pauli matrices as the complex Lorentz tensor `σ_μ^α^{dot β}`. -/
|
/-- The Pauli matrices as the complex Lorentz tensor `σ_μ^α^{dot β}`. -/
|
||||||
def pauliCo := {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | ν α β}ᵀ.tensor
|
def pauliCo := {Lorentz.coMetric | μ ν ⊗ pauliContr | ν α β}ᵀ.tensor
|
||||||
|
|
||||||
/-- The Pauli matrices as the complex Lorentz tensor `σ_μ_α_{dot β}`. -/
|
/-- The Pauli matrices as the complex Lorentz tensor `σ_μ_α_{dot β}`. -/
|
||||||
def pauliCoDown := {pauliCo | μ α β ⊗ Fermion.altLeftMetric | α α' ⊗
|
def pauliCoDown := {pauliCo | μ α β ⊗ Fermion.altLeftMetric | α α' ⊗
|
||||||
|
|
636
HepLean/Tensors/ComplexLorentz/PauliMatrices/Basis.lean
Normal file
636
HepLean/Tensors/ComplexLorentz/PauliMatrices/Basis.lean
Normal file
|
@ -0,0 +1,636 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Joseph Tooby-Smith
|
||||||
|
-/
|
||||||
|
import HepLean.Tensors.ComplexLorentz.PauliMatrices.Basic
|
||||||
|
import HepLean.Tensors.ComplexLorentz.Basis
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## Pauli matrices and the basis of complex Lorentz tensors
|
||||||
|
|
||||||
|
-/
|
||||||
|
open IndexNotation
|
||||||
|
open CategoryTheory
|
||||||
|
open MonoidalCategory
|
||||||
|
open Matrix
|
||||||
|
open MatrixGroups
|
||||||
|
open Complex
|
||||||
|
open TensorProduct
|
||||||
|
open IndexNotation
|
||||||
|
open CategoryTheory
|
||||||
|
open TensorTree
|
||||||
|
open OverColor.Discrete
|
||||||
|
noncomputable section
|
||||||
|
|
||||||
|
namespace complexLorentzTensor
|
||||||
|
open Fermion
|
||||||
|
|
||||||
|
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## Expanding pauliContr in a basis.
|
||||||
|
|
||||||
|
-/
|
||||||
|
/-- The expansion of the Pauli matrices `σ^μ^a^{dot a}` in terms of basis vectors. -/
|
||||||
|
lemma pauliContr_in_basis : {pauliContr | μ α β}ᵀ.tensor =
|
||||||
|
basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 0 | 2 => 0)
|
||||||
|
+ basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 1 | 2 => 1)
|
||||||
|
+ basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 0 | 2 => 1)
|
||||||
|
+ basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 1 | 2 => 0)
|
||||||
|
- I • basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 0 | 2 => 1)
|
||||||
|
+ I • basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 1 | 2 => 0)
|
||||||
|
+ basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 0 | 2 => 0)
|
||||||
|
- basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
|
||||||
|
rw [tensorNode_pauliContr]
|
||||||
|
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constThreeNode_tensor,
|
||||||
|
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue]
|
||||||
|
erw [PauliMatrix.asConsTensor_apply_one, PauliMatrix.asTensor_expand]
|
||||||
|
simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||||
|
Action.FunctorCategoryEquivalence.functor_obj_obj, Action.instMonoidalCategory_tensorObj_V,
|
||||||
|
Fin.isValue, map_sub, map_add, _root_.map_smul]
|
||||||
|
congr 1
|
||||||
|
congr 1
|
||||||
|
congr 1
|
||||||
|
congr 1
|
||||||
|
congr 1
|
||||||
|
congr 1
|
||||||
|
congr 1
|
||||||
|
all_goals
|
||||||
|
erw [tripleIsoSep_tmul, basisVector]
|
||||||
|
apply congrArg
|
||||||
|
try apply congrArg
|
||||||
|
funext i
|
||||||
|
match i with
|
||||||
|
| (0 : Fin 3) =>
|
||||||
|
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.zero_eta, Fin.isValue, OverColor.mk_hom,
|
||||||
|
cons_val_zero, Fin.cases_zero]
|
||||||
|
change _ = Lorentz.complexContrBasisFin4 _
|
||||||
|
simp only [Fin.isValue, Lorentz.complexContrBasisFin4, Basis.coe_reindex, Function.comp_apply]
|
||||||
|
rfl
|
||||||
|
| (1 : Fin 3) => rfl
|
||||||
|
| (2 : Fin 3) => rfl
|
||||||
|
|
||||||
|
lemma pauliContr_basis_expand_tree : {pauliContr | μ α β}ᵀ.tensor =
|
||||||
|
(TensorTree.add (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 0 | 2 => 0))) <|
|
||||||
|
TensorTree.add (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 1 | 2 => 1))) <|
|
||||||
|
TensorTree.add (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 0 | 2 => 1))) <|
|
||||||
|
TensorTree.add (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 1 | 2 => 0))) <|
|
||||||
|
TensorTree.add (smul (-I) (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <|
|
||||||
|
TensorTree.add (smul I (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <|
|
||||||
|
TensorTree.add (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 0 | 2 => 0))) <|
|
||||||
|
(smul (-1) (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR]
|
||||||
|
(fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by
|
||||||
|
rw [pauliContr_in_basis]
|
||||||
|
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor,
|
||||||
|
smul_tensor, neg_smul, one_smul]
|
||||||
|
rfl
|
||||||
|
|
||||||
|
|
||||||
|
/-- The map to colors one gets when contracting with Pauli matrices on the right. -/
|
||||||
|
abbrev pauliMatrixContrMap {n : ℕ} (c : Fin n → complexLorentzTensor.C) :=
|
||||||
|
(Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm)
|
||||||
|
|
||||||
|
lemma prod_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
|
(t : TensorTree complexLorentzTensor c) :
|
||||||
|
(TensorTree.prod t (tensorNode pauliContr)).tensor = (((t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
|
||||||
|
(((t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
|
||||||
|
(((t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
|
||||||
|
(((t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
|
||||||
|
((TensorTree.smul (-I) ((t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
|
||||||
|
((TensorTree.smul I ((t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
|
||||||
|
((t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0))).add
|
||||||
|
(TensorTree.smul (-1) (t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR]
|
||||||
|
fun | 0 => 3 | 1 => 1 | 2 => 1))))))))))).tensor := by
|
||||||
|
rw [prod_tensor_eq_snd <| pauliContr_basis_expand_tree]
|
||||||
|
rw [prod_add _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| prod_add _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
prod_add _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||||||
|
/- Moving smuls. -/
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd<| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| prod_smul _ _ _]
|
||||||
|
|
||||||
|
lemma contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
|
(t : TensorTree complexLorentzTensor c) (i : Fin (n + 3)) (j : Fin (n +2))
|
||||||
|
(h : (pauliMatrixContrMap c) (i.succAbove j) =
|
||||||
|
complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) :
|
||||||
|
(contr i j h (TensorTree.prod t (tensorNode pauliContr))).tensor =
|
||||||
|
((contr i j h (t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
|
||||||
|
((contr i j h (t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
|
||||||
|
((contr i j h (t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
|
||||||
|
((contr i j h (t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
|
||||||
|
((TensorTree.smul (-I) (contr i j h (t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
|
||||||
|
((TensorTree.smul I (contr i j h (t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
|
||||||
|
((contr i j h (t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0)))).add
|
||||||
|
(TensorTree.smul (-1) (contr i j h (t.prod (tensorNode
|
||||||
|
(basisVector ![Color.up, Color.upL, Color.upR]
|
||||||
|
fun | 0 => 3 | 1 => 1 | 2 => 1)))))))))))).tensor := by
|
||||||
|
rw [contr_tensor_eq <| prod_pauliMatrix_basis_tree_expand _]
|
||||||
|
/- Moving contr over add. -/
|
||||||
|
rw [contr_add]
|
||||||
|
rw [add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
/- Moving contr over smul. -/
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
contr_smul _ _]
|
||||||
|
|
||||||
|
lemma basis_contr_pauliMatrix_basis_tree_expand' {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
|
(i : Fin (n + 3)) (j : Fin (n +2))
|
||||||
|
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
|
||||||
|
((pauliMatrixContrMap c) i))
|
||||||
|
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
||||||
|
let c' := Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm
|
||||||
|
let b' (i1 i2 i3 : Fin 4) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
|
||||||
|
((HepLean.PiTensorProduct.elimPureTensor b (fun | 0 => i1 | 1 => i2 | 2 => i3))
|
||||||
|
(finSumFinEquiv.symm i))
|
||||||
|
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
|
||||||
|
(tensorNode pauliContr))).tensor = ((contr i j h ((tensorNode
|
||||||
|
(basisVector c' (b' 0 0 0))))).add
|
||||||
|
((contr i j h ((tensorNode (basisVector c' (b' 0 1 1))))).add
|
||||||
|
((contr i j h ((tensorNode (basisVector c' (b' 1 0 1))))).add
|
||||||
|
((contr i j h ((tensorNode (basisVector c' (b' 1 1 0))))).add
|
||||||
|
((TensorTree.smul (-I) (contr i j h ((tensorNode (basisVector c' (b' 2 0 1)))))).add
|
||||||
|
((TensorTree.smul I (contr i j h ((tensorNode (basisVector c' (b' 2 1 0)))))).add
|
||||||
|
((contr i j h ((tensorNode (basisVector c' (b' 3 0 0))))).add
|
||||||
|
(TensorTree.smul (-1) (contr i j h ((tensorNode
|
||||||
|
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
|
||||||
|
rw [contr_pauliMatrix_basis_tree_expand]
|
||||||
|
/- Product of basis vectors . -/
|
||||||
|
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
|
||||||
|
<| prod_basisVector_tree _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
|
||||||
|
<| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
|
||||||
|
<| prod_basisVector_tree _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
|
||||||
|
<| prod_basisVector_tree _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
|
||||||
|
<| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||||||
|
rfl
|
||||||
|
|
||||||
|
/-- The map to color which appears when contracting a basis vector with
|
||||||
|
puali matrices. -/
|
||||||
|
def pauliMatrixBasisProdMap
|
||||||
|
{n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
|
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) (i1 i2 i3 : Fin 4) :
|
||||||
|
(i : Fin (n + (Nat.succ 0).succ.succ)) →
|
||||||
|
Fin (complexLorentzTensor.repDim (Sum.elim c ![Color.up, Color.upL, Color.upR]
|
||||||
|
(finSumFinEquiv.symm i))) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
|
||||||
|
((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3))
|
||||||
|
(finSumFinEquiv.symm i))
|
||||||
|
|
||||||
|
/-- The new basis vectors which appear when contracting pauli matrices with
|
||||||
|
basis vectors. -/
|
||||||
|
def basisVectorContrPauli {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
|
(i : Fin (n + 3)) (j : Fin (n +2))
|
||||||
|
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
|
||||||
|
(i1 i2 i3 : Fin 4) :=
|
||||||
|
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
|
||||||
|
∘ Fin.succAbove i ∘ Fin.succAbove j
|
||||||
|
let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3)
|
||||||
|
(i.succAbove (j.succAbove k))
|
||||||
|
basisVector c' (b' i1 i2 i3)
|
||||||
|
|
||||||
|
lemma basis_contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
|
(i : Fin (n + 3)) (j : Fin (n +2))
|
||||||
|
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
|
||||||
|
((pauliMatrixContrMap c) i))
|
||||||
|
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
||||||
|
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
|
||||||
|
∘ Fin.succAbove i ∘ Fin.succAbove j
|
||||||
|
let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3)
|
||||||
|
(i.succAbove (j.succAbove k))
|
||||||
|
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
|
||||||
|
(tensorNode pauliContr))).tensor =
|
||||||
|
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 0 0))
|
||||||
|
(tensorNode (basisVector c' (b' 0 0 0))))).add
|
||||||
|
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 1 1))
|
||||||
|
(tensorNode (basisVector c' (b' 0 1 1))))).add
|
||||||
|
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 0 1))
|
||||||
|
(tensorNode (basisVector c' (b' 1 0 1))))).add
|
||||||
|
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 1 0))
|
||||||
|
(tensorNode (basisVector c' (b' 1 1 0))))).add
|
||||||
|
((TensorTree.smul (-I) ((TensorTree.smul
|
||||||
|
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1))
|
||||||
|
(tensorNode (basisVector c' (b' 2 0 1)))))).add
|
||||||
|
((TensorTree.smul I ((TensorTree.smul
|
||||||
|
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0))
|
||||||
|
(tensorNode (basisVector c' (b' 2 1 0)))))).add
|
||||||
|
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 0 0))
|
||||||
|
(tensorNode (basisVector c' (b' 3 0 0))))).add
|
||||||
|
(TensorTree.smul (-1) ((TensorTree.smul
|
||||||
|
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) (tensorNode
|
||||||
|
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
|
||||||
|
rw [basis_contr_pauliMatrix_basis_tree_expand']
|
||||||
|
/- Contracting basis vectors. -/
|
||||||
|
rw [add_tensor_eq_fst <| contr_basisVector_tree _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
|
||||||
|
<| contr_basisVector_tree _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_fst <| contr_basisVector_tree _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
|
||||||
|
<| contr_basisVector_tree _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
smul_tensor_eq <| contr_basisVector_tree _]
|
||||||
|
rfl
|
||||||
|
|
||||||
|
lemma basis_contr_pauliMatrix_basis_tree_expand_tensor {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
|
(i : Fin (n + 3)) (j : Fin (n +2))
|
||||||
|
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
|
||||||
|
((pauliMatrixContrMap c) i))
|
||||||
|
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
||||||
|
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
|
||||||
|
(tensorNode pauliContr))).tensor =
|
||||||
|
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 0 0)) •
|
||||||
|
(basisVectorContrPauli i j b 0 0 0)
|
||||||
|
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 1 1)) •
|
||||||
|
(basisVectorContrPauli i j b 0 1 1)
|
||||||
|
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 0 1)) •
|
||||||
|
(basisVectorContrPauli i j b 1 0 1)
|
||||||
|
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 1 0)) •
|
||||||
|
(basisVectorContrPauli i j b 1 1 0)
|
||||||
|
+ (-I) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1)) •
|
||||||
|
(basisVectorContrPauli i j b 2 0 1)
|
||||||
|
+ I • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0)) •
|
||||||
|
(basisVectorContrPauli i j b 2 1 0)
|
||||||
|
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 0 0)) •
|
||||||
|
(basisVectorContrPauli i j b 3 0 0)
|
||||||
|
+ (-1 : ℂ) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) •
|
||||||
|
(basisVectorContrPauli i j b 3 1 1) := by
|
||||||
|
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||||
|
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, cons_val_one, head_cons, Fin.val_zero,
|
||||||
|
Nat.cast_zero, cons_val_two, Fin.val_one, Nat.cast_one, add_tensor, smul_tensor,
|
||||||
|
tensorNode_tensor, neg_smul, one_smul, Int.reduceNeg]
|
||||||
|
simp_all only [Function.comp_apply, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue]
|
||||||
|
rfl
|
||||||
|
|
||||||
|
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## Expanding pauliCo in a basis.
|
||||||
|
|
||||||
|
-/
|
||||||
|
|
||||||
|
|
||||||
|
/-- The map to color one gets when lowering the indices of pauli matrices. -/
|
||||||
|
def pauliCoMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘
|
||||||
|
⇑finSumFinEquiv.symm) ∘ Fin.succAbove 1 ∘ Fin.succAbove 1)
|
||||||
|
|
||||||
|
lemma pauliMatrix_contr_down_0 :
|
||||||
|
(contr 1 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
|
||||||
|
(tensorNode pauliContr)))).tensor
|
||||||
|
= basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
|
||||||
|
+ basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1) := by
|
||||||
|
conv =>
|
||||||
|
lhs
|
||||||
|
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
|
||||||
|
rw [contrBasisVectorMul_pos (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||||||
|
rw [contrBasisVectorMul_pos (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; lhs; rhs; rhs; lhs
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; rhs; rhs; lhs
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; rhs; lhs;
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; rhs; rhs; lhs;
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs
|
||||||
|
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
|
||||||
|
congr 1
|
||||||
|
· rw [basisVectorContrPauli]
|
||||||
|
congr 1
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
· rw [basisVectorContrPauli]
|
||||||
|
congr 1
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
|
||||||
|
lemma pauliMatrix_contr_down_1 :
|
||||||
|
{(basisVector ![Color.down, Color.down] fun x => 1) | ν μ ⊗
|
||||||
|
pauliContr | μ α β}ᵀ.tensor
|
||||||
|
= basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
|
||||||
|
+ basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by
|
||||||
|
conv =>
|
||||||
|
lhs
|
||||||
|
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||||||
|
rw [contrBasisVectorMul_pos (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||||||
|
rw [contrBasisVectorMul_pos (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; lhs; rhs; rhs; lhs
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; rhs; rhs; lhs
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; rhs; lhs;
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; rhs; rhs; lhs;
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs
|
||||||
|
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
|
||||||
|
congr 1
|
||||||
|
· rw [basisVectorContrPauli]
|
||||||
|
congr 1
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
· rw [basisVectorContrPauli]
|
||||||
|
congr 1
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
|
||||||
|
lemma pauliMatrix_contr_down_2 :
|
||||||
|
{(basisVector ![Color.down, Color.down] fun x => 2) | μ ν ⊗
|
||||||
|
pauliContr | ν α β}ᵀ.tensor
|
||||||
|
= (- I) • basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
|
||||||
|
+ (I) • basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0) := by
|
||||||
|
conv =>
|
||||||
|
lhs
|
||||||
|
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; lhs; rhs; rhs; lhs
|
||||||
|
rw [contrBasisVectorMul_pos (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; rhs; rhs; lhs
|
||||||
|
rw [contrBasisVectorMul_pos (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; rhs; lhs;
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; rhs; rhs; lhs;
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs
|
||||||
|
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
|
||||||
|
congr 1
|
||||||
|
· rw [basisVectorContrPauli]
|
||||||
|
congr 2
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
· rw [basisVectorContrPauli]
|
||||||
|
congr 2
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
|
||||||
|
lemma pauliMatrix_contr_down_3 :
|
||||||
|
{(basisVector ![Color.down, Color.down] fun x => 3) | μ ν ⊗
|
||||||
|
pauliContr | ν α β}ᵀ.tensor
|
||||||
|
= basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
|
||||||
|
+ (- 1 : ℂ) • basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
|
||||||
|
conv =>
|
||||||
|
lhs
|
||||||
|
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; lhs; rhs; rhs; lhs
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; lhs; rhs; rhs; lhs
|
||||||
|
rw [contrBasisVectorMul_neg (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs; rhs; lhs;
|
||||||
|
rw [contrBasisVectorMul_pos (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs; rhs; rhs; lhs;
|
||||||
|
rw [contrBasisVectorMul_pos (by decide)]
|
||||||
|
conv =>
|
||||||
|
lhs
|
||||||
|
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
|
||||||
|
congr 1
|
||||||
|
· rw [basisVectorContrPauli]
|
||||||
|
congr 1
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
· rw [basisVectorContrPauli]
|
||||||
|
congr 1
|
||||||
|
congr 1
|
||||||
|
funext k
|
||||||
|
fin_cases k <;> rfl
|
||||||
|
|
||||||
|
lemma pauliCo_basis_expand : pauliCo
|
||||||
|
= basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
|
||||||
|
+ basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1)
|
||||||
|
- basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
|
||||||
|
- basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0)
|
||||||
|
+ I • basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
|
||||||
|
- I • basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0)
|
||||||
|
- basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
|
||||||
|
+ basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
|
||||||
|
conv =>
|
||||||
|
lhs
|
||||||
|
rw [pauliCo]
|
||||||
|
rw [contr_tensor_eq <| prod_tensor_eq_fst <| coMetric_basis_expand_tree]
|
||||||
|
/- Moving the prod through additions. -/
|
||||||
|
rw [contr_tensor_eq <| add_prod _ _ _]
|
||||||
|
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _]
|
||||||
|
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||||||
|
/- Moving the prod through smuls. -/
|
||||||
|
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||||||
|
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
|
||||||
|
<| smul_prod _ _ _]
|
||||||
|
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||||
|
<| smul_prod _ _ _]
|
||||||
|
/- Moving contraction through addition. -/
|
||||||
|
rw [contr_add]
|
||||||
|
rw [add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||||
|
/- Moving contraction through smul. -/
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_smul _ _]
|
||||||
|
simp only [tensorNode_tensor, add_tensor, smul_tensor]
|
||||||
|
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, neg_smul, one_smul]
|
||||||
|
conv =>
|
||||||
|
lhs; lhs;
|
||||||
|
rw [pauliMatrix_contr_down_0]
|
||||||
|
conv =>
|
||||||
|
lhs; rhs; lhs; rhs;
|
||||||
|
rw [pauliMatrix_contr_down_1]
|
||||||
|
conv =>
|
||||||
|
lhs; rhs; rhs; lhs; rhs;
|
||||||
|
rw [pauliMatrix_contr_down_2]
|
||||||
|
conv =>
|
||||||
|
lhs; rhs; rhs; rhs; rhs;
|
||||||
|
rw [pauliMatrix_contr_down_3]
|
||||||
|
simp only [neg_smul, one_smul]
|
||||||
|
abel
|
||||||
|
|
||||||
|
lemma pauliCo_basis_expand_tree : {pauliCo | μ α β}ᵀ.tensor
|
||||||
|
= (TensorTree.add (tensorNode
|
||||||
|
(basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0))) <|
|
||||||
|
TensorTree.add (tensorNode
|
||||||
|
(basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1))) <|
|
||||||
|
TensorTree.add (TensorTree.smul (-1) (tensorNode
|
||||||
|
(basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))) <|
|
||||||
|
TensorTree.add (TensorTree.smul (-1) (tensorNode
|
||||||
|
(basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))) <|
|
||||||
|
TensorTree.add (TensorTree.smul I (tensorNode
|
||||||
|
(basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <|
|
||||||
|
TensorTree.add (TensorTree.smul (-I) (tensorNode
|
||||||
|
(basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <|
|
||||||
|
TensorTree.add (TensorTree.smul (-1) (tensorNode
|
||||||
|
(basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0)))) <|
|
||||||
|
(tensorNode (basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1)))).tensor := by
|
||||||
|
rw [pauliCo_basis_expand]
|
||||||
|
simp only [Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor, smul_tensor, neg_smul,
|
||||||
|
one_smul]
|
||||||
|
rfl
|
||||||
|
|
||||||
|
lemma pauliCo_prod_basis_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
|
(t : TensorTree complexLorentzTensor c) :
|
||||||
|
(prod (tensorNode pauliCo) t).tensor =
|
||||||
|
(((tensorNode
|
||||||
|
(basisVector pauliCoMap fun | 0 => 0 | 1 => 0 | 2 => 0)).prod t).add
|
||||||
|
(((tensorNode
|
||||||
|
(basisVector pauliCoMap fun | 0 => 0 | 1 => 1 | 2 => 1)).prod t).add
|
||||||
|
((TensorTree.smul (-1) ((tensorNode
|
||||||
|
(basisVector pauliCoMap fun | 0 => 1 | 1 => 0 | 2 => 1)).prod t)).add
|
||||||
|
((TensorTree.smul (-1) ((tensorNode
|
||||||
|
(basisVector pauliCoMap fun | 0 => 1 | 1 => 1 | 2 => 0)).prod t)).add
|
||||||
|
((TensorTree.smul I ((tensorNode
|
||||||
|
(basisVector pauliCoMap fun | 0 => 2 | 1 => 0 | 2 => 1)).prod t)).add
|
||||||
|
((TensorTree.smul (-I) ((tensorNode
|
||||||
|
(basisVector pauliCoMap fun | 0 => 2 | 1 => 1 | 2 => 0)).prod t)).add
|
||||||
|
((TensorTree.smul (-1) ((tensorNode
|
||||||
|
(basisVector pauliCoMap fun | 0 => 3 | 1 => 0 | 2 => 0)).prod t)).add
|
||||||
|
((tensorNode
|
||||||
|
(basisVector pauliCoMap fun | 0 => 3 | 1 => 1 | 2 => 1)).prod
|
||||||
|
t)))))))).tensor := by
|
||||||
|
rw [prod_tensor_eq_fst <| pauliCo_basis_expand_tree]
|
||||||
|
/- Moving the prod through additions. -/
|
||||||
|
rw [add_prod _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_prod _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_prod _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_prod _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||||||
|
/- Moving the prod through smuls. -/
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
||||||
|
smul_prod _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_fst <| smul_prod _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||||||
|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||||
|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
||||||
|
smul_prod _ _ _]
|
||||||
|
|
||||||
|
end complexLorentzTensor
|
|
@ -3,7 +3,7 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||||
Released under Apache 2.0 license as described in the file LICENSE.
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
Authors: Joseph Tooby-Smith
|
Authors: Joseph Tooby-Smith
|
||||||
-/
|
-/
|
||||||
import HepLean.Tensors.ComplexLorentz.PauliLower
|
import HepLean.Tensors.ComplexLorentz.PauliMatrices.Basis
|
||||||
import HepLean.Tensors.ComplexLorentz.Lemmas
|
import HepLean.Tensors.ComplexLorentz.Lemmas
|
||||||
/-!
|
/-!
|
||||||
|
|
||||||
|
@ -40,7 +40,7 @@ def pauliMatrixContrPauliMatrixMap := ((Sum.elim
|
||||||
|
|
||||||
lemma pauliMatrix_contr_lower_0_0_0 :
|
lemma pauliMatrix_contr_lower_0_0_0 :
|
||||||
{(basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0)) | μ α β ⊗
|
{(basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0)) | μ α β ⊗
|
||||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
pauliContr | μ α' β'}ᵀ.tensor =
|
||||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
|
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
|
||||||
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
|
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
|
||||||
conv =>
|
conv =>
|
||||||
|
@ -85,7 +85,7 @@ lemma pauliMatrix_contr_lower_0_0_0 :
|
||||||
|
|
||||||
lemma pauliMatrix_contr_lower_0_1_1 :
|
lemma pauliMatrix_contr_lower_0_1_1 :
|
||||||
{(basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1)) | μ α β ⊗
|
{(basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1)) | μ α β ⊗
|
||||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
pauliContr | μ α' β'}ᵀ.tensor =
|
||||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
||||||
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
|
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
|
||||||
conv =>
|
conv =>
|
||||||
|
@ -130,7 +130,7 @@ lemma pauliMatrix_contr_lower_0_1_1 :
|
||||||
|
|
||||||
lemma pauliMatrix_contr_lower_1_0_1 :
|
lemma pauliMatrix_contr_lower_1_0_1 :
|
||||||
{(basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)) | μ α β ⊗
|
{(basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)) | μ α β ⊗
|
||||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
pauliContr | μ α' β'}ᵀ.tensor =
|
||||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||||||
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
|
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
|
||||||
conv =>
|
conv =>
|
||||||
|
@ -175,7 +175,7 @@ lemma pauliMatrix_contr_lower_1_0_1 :
|
||||||
|
|
||||||
lemma pauliMatrix_contr_lower_1_1_0 :
|
lemma pauliMatrix_contr_lower_1_1_0 :
|
||||||
{(basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0)) | μ α β ⊗
|
{(basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0)) | μ α β ⊗
|
||||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
pauliContr | μ α' β'}ᵀ.tensor =
|
||||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
||||||
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
|
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
|
||||||
conv =>
|
conv =>
|
||||||
|
@ -220,7 +220,7 @@ lemma pauliMatrix_contr_lower_1_1_0 :
|
||||||
|
|
||||||
lemma pauliMatrix_contr_lower_2_0_1 :
|
lemma pauliMatrix_contr_lower_2_0_1 :
|
||||||
{(basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1)) | μ α β ⊗
|
{(basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1)) | μ α β ⊗
|
||||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
pauliContr | μ α' β'}ᵀ.tensor =
|
||||||
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||||||
+ (I) •
|
+ (I) •
|
||||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
|
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
|
||||||
|
@ -266,7 +266,7 @@ lemma pauliMatrix_contr_lower_2_0_1 :
|
||||||
|
|
||||||
lemma pauliMatrix_contr_lower_2_1_0 :
|
lemma pauliMatrix_contr_lower_2_1_0 :
|
||||||
{(basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0)) | μ α β ⊗
|
{(basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0)) | μ α β ⊗
|
||||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
pauliContr | μ α' β'}ᵀ.tensor =
|
||||||
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
||||||
+ (I) •
|
+ (I) •
|
||||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
|
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
|
||||||
|
@ -312,7 +312,7 @@ lemma pauliMatrix_contr_lower_2_1_0 :
|
||||||
|
|
||||||
lemma pauliMatrix_contr_lower_3_0_0 :
|
lemma pauliMatrix_contr_lower_3_0_0 :
|
||||||
{(basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0)) | μ α β ⊗
|
{(basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0)) | μ α β ⊗
|
||||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
pauliContr | μ α' β'}ᵀ.tensor =
|
||||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
|
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
|
||||||
+ (-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap
|
+ (-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap
|
||||||
(fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
|
(fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
|
||||||
|
@ -358,7 +358,7 @@ lemma pauliMatrix_contr_lower_3_0_0 :
|
||||||
|
|
||||||
lemma pauliMatrix_contr_lower_3_1_1 :
|
lemma pauliMatrix_contr_lower_3_1_1 :
|
||||||
{(basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1)) | μ α β ⊗
|
{(basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1)) | μ α β ⊗
|
||||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
pauliContr | μ α' β'}ᵀ.tensor =
|
||||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
||||||
+ (-1 : ℂ) •
|
+ (-1 : ℂ) •
|
||||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
|
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
|
||||||
|
@ -429,7 +429,7 @@ private lemma pauliCo_prod_basis_expand' {n : ℕ} {c : Fin n → complexLorentz
|
||||||
exact pauliCo_prod_basis_expand _
|
exact pauliCo_prod_basis_expand _
|
||||||
|
|
||||||
lemma pauliCo_contr_pauliContr_expand_aux :
|
lemma pauliCo_contr_pauliContr_expand_aux :
|
||||||
{pauliCo | μ α β ⊗ PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor
|
{pauliCo | μ α β ⊗ pauliContr | μ α' β'}ᵀ.tensor
|
||||||
= ((tensorNode
|
= ((tensorNode
|
||||||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
|
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
|
||||||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)).add
|
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)).add
|
||||||
|
@ -501,7 +501,7 @@ lemma pauliCo_contr_pauliContr_expand_aux :
|
||||||
pauliMatrix_contr_lower_3_1_1]
|
pauliMatrix_contr_lower_3_1_1]
|
||||||
|
|
||||||
lemma pauliCo_contr_pauliContr_expand :
|
lemma pauliCo_contr_pauliContr_expand :
|
||||||
{pauliCo | ν α β ⊗ PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor =
|
{pauliCo | ν α β ⊗ pauliContr | ν α' β'}ᵀ.tensor =
|
||||||
2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)
|
2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)
|
||||||
+ 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
+ 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
||||||
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
|
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
|
||||||
|
@ -517,7 +517,7 @@ lemma pauliCo_contr_pauliContr_expand :
|
||||||
|
|
||||||
/-- The statement that `η_{μν} σ^{μ α dot β} σ^{ν α' dot β'} = 2 ε^{αα'} ε^{dot β dot β'}`. -/
|
/-- The statement that `η_{μν} σ^{μ α dot β} σ^{ν α' dot β'} = 2 ε^{αα'} ε^{dot β dot β'}`. -/
|
||||||
theorem pauliCo_contr_pauliContr :
|
theorem pauliCo_contr_pauliContr :
|
||||||
{pauliCo | ν α β ⊗ PauliMatrix.asConsTensor | ν α' β' =
|
{pauliCo | ν α β ⊗ pauliContr | ν α' β' =
|
||||||
2 •ₜ Fermion.leftMetric | α α' ⊗ Fermion.rightMetric | β β'}ᵀ := by
|
2 •ₜ Fermion.leftMetric | α α' ⊗ Fermion.rightMetric | β β'}ᵀ := by
|
||||||
rw [pauliCo_contr_pauliContr_expand]
|
rw [pauliCo_contr_pauliContr_expand]
|
||||||
rw [perm_tensor_eq <| smul_tensor_eq <| leftMetric_mul_rightMetric_tree]
|
rw [perm_tensor_eq <| smul_tensor_eq <| leftMetric_mul_rightMetric_tree]
|
Loading…
Add table
Add a link
Reference in a new issue