From d911b3b0f9dd0475201c9517ed29916719f65cc8 Mon Sep 17 00:00:00 2001 From: Pietro Monticone <38562595+pitmonticone@users.noreply.github.com> Date: Tue, 14 Jan 2025 00:11:17 +0100 Subject: [PATCH] clean mathematics --- HepLean/Mathematics/Fin.lean | 2 +- HepLean/Mathematics/Fin/Involutions.lean | 6 +++--- HepLean/Mathematics/PiTensorProduct.lean | 2 +- HepLean/Mathematics/SO3/Basic.lean | 2 +- HepLean/Mathematics/SchurTriangulation.lean | 6 +++--- 5 files changed, 9 insertions(+), 9 deletions(-) diff --git a/HepLean/Mathematics/Fin.lean b/HepLean/Mathematics/Fin.lean index d142708..73df973 100644 --- a/HepLean/Mathematics/Fin.lean +++ b/HepLean/Mathematics/Fin.lean @@ -352,7 +352,7 @@ lemma finExtractTwo_apply_snd {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) : rw [← Equiv.eq_symm_apply] simp -/-- Takes two maps `Fin n → Fin n` and returns the equivelance they form. -/ +/-- Takes two maps `Fin n → Fin n` and returns the equivalence they form. -/ def finMapToEquiv (f1 : Fin n → Fin m) (f2 : Fin m → Fin n) (h : ∀ x, f1 (f2 x) = x := by decide) (h' : ∀ x, f2 (f1 x) = x := by decide) : Fin n ≃ Fin m where diff --git a/HepLean/Mathematics/Fin/Involutions.lean b/HepLean/Mathematics/Fin/Involutions.lean index addb453..a57eccb 100644 --- a/HepLean/Mathematics/Fin/Involutions.lean +++ b/HepLean/Mathematics/Fin/Involutions.lean @@ -291,11 +291,11 @@ lemma involutionAddEquiv_isSome_image_zero {n : ℕ} : ## Equivalences of involutions with no fixed points. -The main aim of thes equivalences is to define `involutionNoFixedZeroEquivProd`. +The main aim of these equivalences is to define `involutionNoFixedZeroEquivProd`. -/ -/-- Fixed point free involutions of `Fin n.succ` can be seperated based on where they sent +/-- Fixed point free involutions of `Fin n.succ` can be separated based on where they sent `0`. -/ def involutionNoFixedEquivSum {n : ℕ} : {f : Fin n.succ → Fin n.succ // Function.Involutive f @@ -544,7 +544,7 @@ def involutionNoFixedEquivSumSame {n : ℕ} : refine Equiv.trans involutionNoFixedEquivSum ?_ refine Equiv.sigmaCongrRight involutionNoFixedZeroSetEquiv -/-- Ever fixed-point free involutions of `Fin n.succ.succ` can be decomponsed into a +/-- Ever fixed-point free involutions of `Fin n.succ.succ` can be decomposed into a element of `Fin n.succ` (where `0` is sent) and a fixed-point free involution of `Fin n`. -/ def involutionNoFixedZeroEquivProd {n : ℕ} : diff --git a/HepLean/Mathematics/PiTensorProduct.lean b/HepLean/Mathematics/PiTensorProduct.lean index 8bd92ea..4119452 100644 --- a/HepLean/Mathematics/PiTensorProduct.lean +++ b/HepLean/Mathematics/PiTensorProduct.lean @@ -154,7 +154,7 @@ lemma induction_mod_tmul # Dependent type version of PiTensorProduct.tmulEquiv -/ -/-- Given two maps `s1` and `s2` whose targets carry an instance of an addative commutative +/-- Given two maps `s1` and `s2` whose targets carry an instance of an additive commutative monoid, the target of the sum of these two maps also carry an instance thereof. -/ instance : (i : ι1 ⊕ ι2) → AddCommMonoid ((fun i => Sum.elim s1 s2 i) i) := fun i => match i with diff --git a/HepLean/Mathematics/SO3/Basic.lean b/HepLean/Mathematics/SO3/Basic.lean index 14eba5e..ddee0ef 100644 --- a/HepLean/Mathematics/SO3/Basic.lean +++ b/HepLean/Mathematics/SO3/Basic.lean @@ -57,7 +57,7 @@ lemma subtype_val_eq_toGL : (Subtype.val : SO3 → Matrix (Fin 3) (Fin 3) ℝ) = Units.val ∘ toGL.toFun := rfl -/-- The inclusino of `SO(3)` into `GL(3,ℝ)` is an injection. -/ +/-- The inclusion of `SO(3)` into `GL(3,ℝ)` is an injection. -/ lemma toGL_injective : Function.Injective toGL := by refine fun A B h ↦ Subtype.eq ?_ rw [@Units.ext_iff] at h diff --git a/HepLean/Mathematics/SchurTriangulation.lean b/HepLean/Mathematics/SchurTriangulation.lean index bc510f5..6c4507a 100644 --- a/HepLean/Mathematics/SchurTriangulation.lean +++ b/HepLean/Mathematics/SchurTriangulation.lean @@ -17,7 +17,7 @@ closed field, e.g., `ℂ`, is unitarily similar to an upper triangular matrix. be decomposed as `A = U * T * star U` where `U` is unitary and `T` is upper triangular. - `Matrix.schurTriangulationUnitary` : the unitary matrix `U` as previously stated. - `Matrix.schurTriangulation` : the upper triangular matrix `T` as previously stated. -- Some auxilary definitions are not meant to be used directly, but +- Some auxiliary definitions are not meant to be used directly, but `LinearMap.SchurTriangulationAux.of` contains the main algorithm for the triangulation procedure. -/ @@ -124,8 +124,8 @@ end Given a linear endomorphism `f` on a non-trivial finite-dimensional vector space `E` over an algebraically closed field `𝕜`, one can always pick an eigenvalue `μ` of `f` whose corresponding eigenspace `V` is non-trivial. Given that `E` is also an inner product space, let `bV` and `bW` be -othonormal bases for `V` and `Vᗮ` respectively. Then, the collection of vectors in `bV` and `bW` -forms an othornomal basis `bE` for `E`, as the direct sum of `V` and `Vᗮ` is an internal +orthonormal bases for `V` and `Vᗮ` respectively. Then, the collection of vectors in `bV` and `bW` +forms an orthonormal basis `bE` for `E`, as the direct sum of `V` and `Vᗮ` is an internal decomposition of `E`. The matrix representation of `f` with respect to `bE` satisfies $$ \sideset{_\mathrm{bE}}{_\mathrm{bE}}{[f]} =