refactor: Lint

This commit is contained in:
jstoobysmith 2024-06-11 11:33:50 -04:00
parent e0aaa5b1a8
commit da37263179
3 changed files with 12 additions and 13 deletions

View file

@ -60,6 +60,7 @@ import HepLean.SpaceTime.Basic
import HepLean.SpaceTime.CliffordAlgebra
import HepLean.SpaceTime.FourVelocity
import HepLean.SpaceTime.LorentzAlgebra.Basic
import HepLean.SpaceTime.LorentzAlgebra.Basis
import HepLean.SpaceTime.LorentzGroup.Basic
import HepLean.SpaceTime.LorentzGroup.Boosts
import HepLean.SpaceTime.LorentzGroup.Orthochronous

View file

@ -11,24 +11,16 @@ We define the standard basis of the Lorentz group.
-/
namespace spaceTime
namespace lorentzAlgebra
open Matrix
/-- The matrices which form the basis of the Lorentz algebra. -/
@[simp]
def σMat (μ ν : Fin 4) : Matrix (Fin 4) (Fin 4) := fun ρ δ ↦
η^[ρ]_[μ] * η_[ν]_[δ] - η_[μ]_[δ] * η^[ρ]_[ν]
end lorentzAlgebra
end spaceTime

View file

@ -29,18 +29,24 @@ open TensorProduct
def η : Matrix (Fin 4) (Fin 4) := Matrix.reindex finSumFinEquiv finSumFinEquiv
$ LieAlgebra.Orthogonal.indefiniteDiagonal (Fin 1) (Fin 3)
/-- The metric with lower indices. -/
notation "η_[" μ "]_[" ν "]" => η μ ν
/-- The metric with upper indices. -/
notation "η^[" μ "]^[" ν "]" => η μ ν
notation "η_[" μ "]^[" ν "]" => η_[μ]_[0] * η^[0]^[ν] + η_[μ]_[1] * η^[1]^[ν] + η_[μ]_[2] * η^[2]^[ν]
+ η_[μ]_[3] * η^[3]^[ν]
/-- The metric with one lower and one upper index. -/
notation "η_[" μ "]^[" ν "]" => η_[μ]_[0] * η^[0]^[ν] + η_[μ]_[1] * η^[1]^[ν] +
η_[μ]_[2] * η^[2]^[ν] + η_[μ]_[3] * η^[3]^[ν]
notation "η^[" μ "]_[" ν "]" => η^[μ]^[0] * η_[0]_[ν] + η^[μ]^[1] * η_[1]_[ν] + η^[μ]^[2] * η_[2]_[ν]
+ η^[μ]^[3] * η_[3]_[ν]
/-- The metric with one lower and one upper index. -/
notation "η^[" μ "]_[" ν "]" => η^[μ]^[0] * η_[0]_[ν] + η^[μ]^[1] * η_[1]_[ν]
+ η^[μ]^[2] * η_[2]_[ν] + η^[μ]^[3] * η_[3]_[ν]
/-- A matrix with one lower and one upper index. -/
notation "["Λ"]^[" μ "]_[" ν "]" => (Λ : Matrix (Fin 4) (Fin 4) ) μ ν
/-- A matrix with both lower indices. -/
notation "["Λ"]_[" μ "]_[" ν "]" => ∑ ρ, η_[μ]_[ρ] * [Λ]^[ρ]_[ν]