reactor: Fix spelling

This commit is contained in:
jstoobysmith 2024-12-20 13:57:29 +00:00
parent b93ae33963
commit da595e8ad2
7 changed files with 75 additions and 81 deletions

View file

@ -0,0 +1,437 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.Wick.Signs.StaticWickCoef
/-!
# Create and annihilate sections (of bundles)
-/
namespace Wick
open HepLean.List
open FieldStatistic
/-- The sections of `Σ i, f i` over a list `l : List 𝓕`.
In terms of physics, given some fields `φ₁...φₙ`, the different ways one can associate
each field as a `creation` or an `annilation` operator. E.g. the number of terms
`φ₁⁰φ₂¹...φₙ⁰` `φ₁¹φ₂¹...φₙ⁰` etc. If some fields are exclusively creation or annhilation
operators at this point (e.g. ansymptotic states) this is accounted for. -/
def CreateAnnihilateSect {𝓕 : Type} (f : 𝓕 → Type) (l : List 𝓕) : Type :=
Π i, f (l.get i)
namespace CreateAnnihilateSect
section basic_defs
variable {𝓕 : Type} {f : 𝓕 → Type} [∀ i, Fintype (f i)] {l : List 𝓕} (a : CreateAnnihilateSect f l)
/-- The type `CreateAnnihilateSect f l` is finite. -/
instance fintype : Fintype (CreateAnnihilateSect f l) := Pi.fintype
/-- The section got by dropping the first element of `l` if it exists. -/
def tail : {l : List 𝓕} → (a : CreateAnnihilateSect f l) → CreateAnnihilateSect f l.tail
| [], a => a
| _ :: _, a => fun i => a (Fin.succ i)
/-- For a list of fields `i :: l` the value of the section at the head `i`. -/
def head {i : 𝓕} (a : CreateAnnihilateSect f (i :: l)) : f i := a ⟨0, Nat.zero_lt_succ l.length⟩
end basic_defs
section toList_basic
variable {𝓕 : Type} {f : 𝓕 → Type} (q : 𝓕 → FieldStatistic)
{l : List 𝓕} (a : CreateAnnihilateSect f l)
/-- The list `List (Σ i, f i)` defined by `a`. -/
def toList : {l : List 𝓕} → (a : CreateAnnihilateSect f l) → List (Σ i, f i)
| [], _ => []
| i :: _, a => ⟨i, a.head⟩ :: toList a.tail
@[simp]
lemma toList_length : (toList a).length = l.length := by
induction l with
| nil => rfl
| cons i l ih =>
simp only [toList, List.length_cons, Fin.zero_eta]
rw [ih]
lemma toList_tail : {l : List 𝓕} → (a : CreateAnnihilateSect f l) → toList a.tail = (toList a).tail
| [], _ => rfl
| i :: l, a => by
simp [toList]
lemma toList_cons {i : 𝓕} (a : CreateAnnihilateSect f (i :: l)) :
(toList a) = ⟨i, a.head⟩ :: toList a.tail := by
rfl
lemma toList_get (a : CreateAnnihilateSect f l) :
(toList a).get = (fun i => ⟨l.get i, a i⟩) ∘ Fin.cast (by simp) := by
induction l with
| nil =>
funext i
exact Fin.elim0 i
| cons i l ih =>
simp only [toList_cons, List.get_eq_getElem, Fin.zero_eta, List.getElem_cons_succ,
Function.comp_apply, Fin.cast_mk]
funext x
match x with
| ⟨0, h⟩ => rfl
| ⟨x + 1, h⟩ =>
simp only [List.get_eq_getElem, Prod.mk.eta, List.getElem_cons_succ, Function.comp_apply]
change (toList a.tail).get _ = _
rw [ih]
simp [tail]
@[simp]
lemma toList_grade :
FieldStatistic.ofList (fun i => q i.fst) a.toList = fermionic ↔
FieldStatistic.ofList q l = fermionic := by
induction l with
| nil =>
simp [toList]
| cons i r ih =>
simp only [ofList, Fin.isValue, ite_eq_right_iff, zero_ne_one, imp_false]
have ih' := ih (fun i => a i.succ)
have h1 : ofList (fun i => q i.fst) a.tail.toList = ofList q r := by
by_cases h : ofList q r = fermionic
· simp_all
· have h0 : ofList q r = bosonic := (neq_fermionic_iff_eq_bosonic (ofList q r)).mp h
rw [h0] at ih'
simp only [reduceCtorEq, iff_false, neq_fermionic_iff_eq_bosonic] at ih'
have h0' : ofList (fun i => q i.fst) a.tail.toList = bosonic := ih'
rw [h0, h0']
rw [h1]
@[simp]
lemma toList_grade_take (q : 𝓕 → FieldStatistic) :
(r : List 𝓕) → (a : CreateAnnihilateSect f r) → (n : ) →
ofList (fun i => q i.fst) (List.take n a.toList) = ofList q (List.take n r)
| [], _, _ => by
simp [toList]
| i :: r, a, 0 => by
simp
| i :: r, a, Nat.succ n => by
simp only [ofList, Fin.isValue]
rw [toList_grade_take q r a.tail n]
end toList_basic
section toList_erase
variable {𝓕 : Type} {f : 𝓕 → Type} {l : List 𝓕}
/-- The equivalence between `CreateAnnihilateSect f l` and
`f (l.get n) × CreateAnnihilateSect f (l.eraseIdx n)` obtained by extracting the `n`th field
from `l`. -/
def extractEquiv (n : Fin l.length) : CreateAnnihilateSect f l ≃
f (l.get n) × CreateAnnihilateSect f (l.eraseIdx n) := by
match l with
| [] => exact Fin.elim0 n
| l0 :: l =>
let e1 : CreateAnnihilateSect f ((l0 :: l).eraseIdx n) ≃ Π i, f ((l0 :: l).get (n.succAbove i)) :=
Equiv.piCongr (Fin.castOrderIso (by rw [eraseIdx_cons_length])).toEquiv
fun x => Equiv.cast (congrArg f (by
rw [HepLean.List.eraseIdx_get]
simp only [List.length_cons, Function.comp_apply, List.get_eq_getElem, Fin.coe_cast,
RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply]
congr 1
simp only [Fin.succAbove]
split
next h =>
simp_all only [Fin.coe_castSucc]
split
next h_1 => simp_all only [Fin.coe_castSucc, Fin.coe_cast]
next h_1 =>
simp_all only [not_lt, Fin.val_succ, Fin.coe_cast, self_eq_add_right, one_ne_zero]
simp only [Fin.le_def, List.length_cons, Fin.coe_castSucc, Fin.coe_cast] at h_1
simp only [Fin.lt_def, Fin.coe_castSucc, Fin.coe_cast] at h
omega
next h =>
simp_all only [not_lt, Fin.val_succ]
split
next h_1 =>
simp_all only [Fin.coe_castSucc, Fin.coe_cast, add_right_eq_self, one_ne_zero]
simp only [Fin.lt_def, Fin.coe_castSucc, Fin.coe_cast] at h_1
simp only [Fin.le_def, Fin.coe_cast, Fin.coe_castSucc] at h
omega
next h_1 => simp_all only [not_lt, Fin.val_succ, Fin.coe_cast]))
exact (Fin.insertNthEquiv _ _).symm.trans (Equiv.prodCongr (Equiv.refl _) e1.symm)
lemma extractEquiv_symm_toList_get_same (n : Fin l.length) (a0 : f (l.get n))
(a : CreateAnnihilateSect f (l.eraseIdx n)) :
((extractEquiv n).symm (a0, a)).toList[n] = ⟨l[n], a0⟩ := by
match l with
| [] => exact Fin.elim0 n
| l0 :: l =>
trans (((CreateAnnihilateSect.extractEquiv n).symm (a0, a)).toList).get (Fin.cast (by simp) n)
· simp only [List.length_cons, List.get_eq_getElem, Fin.coe_cast]
rfl
rw [CreateAnnihilateSect.toList_get]
simp only [List.get_eq_getElem, List.length_cons, extractEquiv, RelIso.coe_fn_toEquiv,
Fin.castOrderIso_apply, Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.prodCongr_symm,
Equiv.refl_symm, Equiv.prodCongr_apply, Equiv.coe_refl, Prod.map_apply, id_eq,
Function.comp_apply, Fin.cast_trans, Fin.cast_eq_self, Sigma.mk.inj_iff, heq_eq_eq]
apply And.intro
· rfl
erw [Fin.insertNthEquiv_apply]
simp only [Fin.insertNth_apply_same]
/-- The section obtained by dropping the `n`th field. -/
def eraseIdx (a : CreateAnnihilateSect f l) (n : Fin l.length) :
CreateAnnihilateSect f (l.eraseIdx n) :=
(extractEquiv n a).2
@[simp]
lemma eraseIdx_zero_tail {i : 𝓕} (a : CreateAnnihilateSect f (i :: l)) :
(eraseIdx a (@OfNat.ofNat (Fin (l.length + 1)) 0 Fin.instOfNat : Fin (l.length + 1))) =
a.tail := by
simp only [List.length_cons, Fin.val_zero, List.eraseIdx_cons_zero, eraseIdx, List.get_eq_getElem,
List.getElem_cons_zero, extractEquiv, Fin.zero_succAbove, Fin.val_succ, List.getElem_cons_succ,
Fin.insertNthEquiv_zero, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, Fin.cast_eq_self,
Equiv.cast_refl, Equiv.trans_apply, Equiv.prodCongr_apply, Equiv.coe_refl, Prod.map_snd]
rfl
lemma eraseIdx_succ_head {i : 𝓕} (n : ) (hn : n + 1 < (i :: l).length)
(a : CreateAnnihilateSect f (i :: l)) : (eraseIdx a ⟨n + 1, hn⟩).head = a.head := by
rw [eraseIdx, extractEquiv]
simp only [List.length_cons, List.get_eq_getElem, List.getElem_cons_succ, List.eraseIdx_cons_succ,
RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, Equiv.trans_apply, Equiv.prodCongr_apply,
Equiv.coe_refl, Prod.map_snd]
conv_lhs =>
rhs
rhs
rhs
erw [Fin.insertNthEquiv_symm_apply]
simp only [head, Equiv.piCongr, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, Equiv.piCongrRight,
Equiv.cast_symm, Equiv.piCongrLeft, OrderIso.toEquiv_symm, OrderIso.symm_symm,
Equiv.piCongrLeft', List.length_cons, Fin.zero_eta, Equiv.symm_trans_apply, Equiv.symm_symm,
Equiv.coe_fn_mk, Equiv.coe_fn_symm_mk, Pi.map_apply, Fin.cast_zero, Fin.val_zero,
List.getElem_cons_zero, Equiv.cast_apply]
simp only [Fin.succAbove, Fin.castSucc_zero', Fin.removeNth]
refine cast_eq_iff_heq.mpr ?_
congr
simp [Fin.ext_iff]
lemma eraseIdx_succ_tail {i : 𝓕} (n : ) (hn : n + 1 < (i :: l).length)
(a : CreateAnnihilateSect f (i :: l)) :
(eraseIdx a ⟨n + 1, hn⟩).tail = eraseIdx a.tail ⟨n, Nat.succ_lt_succ_iff.mp hn⟩ := by
match l with
| [] =>
simp at hn
| r0 :: r =>
rw [eraseIdx, extractEquiv]
simp only [List.length_cons, List.eraseIdx_cons_succ, List.tail_cons, List.get_eq_getElem,
List.getElem_cons_succ, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, Equiv.trans_apply,
Equiv.prodCongr_apply, Equiv.coe_refl, Prod.map_snd, Nat.succ_eq_add_one]
conv_lhs =>
rhs
rhs
rhs
erw [Fin.insertNthEquiv_symm_apply]
rw [eraseIdx]
conv_rhs =>
rhs
rw [extractEquiv]
simp only [List.get_eq_getElem, List.length_cons, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
Equiv.trans_apply, Equiv.prodCongr_apply, Equiv.coe_refl, Prod.map_snd]
erw [Fin.insertNthEquiv_symm_apply]
simp only [tail, List.tail_cons, Equiv.piCongr, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
Equiv.piCongrRight, Equiv.cast_symm, Equiv.piCongrLeft, OrderIso.toEquiv_symm,
OrderIso.symm_symm, Equiv.piCongrLeft', Equiv.symm_trans_apply, Equiv.symm_symm,
Equiv.coe_fn_mk, Equiv.coe_fn_symm_mk, Pi.map_apply, Fin.cast_succ_eq, Fin.val_succ,
List.getElem_cons_succ, Equiv.cast_apply, List.get_eq_getElem, List.length_cons, Fin.succ_mk,
Prod.map_apply, id_eq]
funext i
simp only [Pi.map_apply, Equiv.cast_apply]
have hcast {α β : Type} (h : α = β) (a : α) (b : β) : cast h a = b ↔ a = cast (Eq.symm h) b := by
cases h
simp
rw [hcast]
simp only [cast_cast]
refine eq_cast_iff_heq.mpr ?_
simp only [Fin.succAbove, Fin.removeNth]
congr
simp only [List.length_cons, Fin.ext_iff, Fin.val_succ]
split
next h =>
simp_all only [Fin.coe_castSucc, Fin.val_succ, Fin.coe_cast, add_left_inj]
split
next h_1 => simp_all only [Fin.coe_castSucc, Fin.coe_cast]
next h_1 =>
simp_all only [not_lt, Fin.val_succ, Fin.coe_cast, self_eq_add_right, one_ne_zero]
simp only [Fin.lt_def, Fin.coe_castSucc, Fin.val_succ, Fin.coe_cast, add_lt_add_iff_right]
at h
simp only [Fin.le_def, Fin.coe_castSucc, Fin.coe_cast] at h_1
omega
next h =>
simp_all only [not_lt, Fin.val_succ, Fin.coe_cast, add_left_inj]
split
next h_1 =>
simp_all only [Fin.coe_castSucc, Fin.coe_cast, add_right_eq_self, one_ne_zero]
simp only [Fin.le_def, Fin.coe_castSucc, Fin.val_succ, Fin.coe_cast, add_le_add_iff_right]
at h
simp only [Fin.lt_def, Fin.coe_castSucc, Fin.coe_cast] at h_1
omega
next h_1 => simp_all only [not_lt, Fin.val_succ, Fin.coe_cast]
lemma eraseIdx_toList : {l : List 𝓕} → {n : Fin l.length} → (a : CreateAnnihilateSect f l) →
(eraseIdx a n).toList = a.toList.eraseIdx n
| [], n, _ => Fin.elim0 n
| r0 :: r, ⟨0, h⟩, a => by
simp [toList_tail]
| r0 :: r, ⟨n + 1, h⟩, a => by
simp only [toList, List.length_cons, List.tail_cons, List.eraseIdx_cons_succ, List.cons.injEq,
Sigma.mk.inj_iff, heq_eq_eq, true_and]
apply And.intro
· rw [eraseIdx_succ_head]
· conv_rhs => rw [← eraseIdx_toList (l := r) (n := ⟨n, Nat.succ_lt_succ_iff.mp h⟩) a.tail]
rw [eraseIdx_succ_tail]
lemma extractEquiv_symm_eraseIdx {I : Type} {f : I → Type}
{l : List I} (n : Fin l.length) (a0 : f l[↑n]) (a : CreateAnnihilateSect f (l.eraseIdx n)) :
((extractEquiv n).symm (a0, a)).eraseIdx n = a := by
match l with
| [] => exact Fin.elim0 n
| l0 :: l =>
rw [eraseIdx, extractEquiv]
simp
end toList_erase
section toList_sign_conditions
variable {𝓕 : Type} {f : 𝓕 → Type} (q : 𝓕 → FieldStatistic) (le : 𝓕𝓕 → Prop) [DecidableRel le]
{l : List 𝓕} (a : CreateAnnihilateSect f l)
lemma toList_koszulSignInsert (x : (i : 𝓕) × f i) :
koszulSignInsert (fun i => q i.fst) (fun i j => le i.fst j.fst) x a.toList =
koszulSignInsert q le x.1 l := by
induction l with
| nil => simp [koszulSignInsert]
| cons b l ih =>
simp only [koszulSignInsert, List.tail_cons, Fin.isValue]
rw [ih]
lemma toList_koszulSign :
koszulSign (fun i => q i.fst) (fun i j => le i.fst j.fst) a.toList =
koszulSign q le l := by
induction l with
| nil => simp [koszulSign]
| cons i l ih =>
simp only [koszulSign, List.tail_cons]
rw [ih]
congr 1
rw [toList_koszulSignInsert]
lemma insertionSortEquiv_toList :
insertionSortEquiv (fun i j => le i.fst j.fst) a.toList =
(Fin.castOrderIso (by simp)).toEquiv.trans ((insertionSortEquiv le l).trans
(Fin.castOrderIso (by simp)).toEquiv) := by
induction l with
| nil =>
simp [liftM, HepLean.List.insertionSortEquiv]
| cons i l ih =>
simp only [liftM, List.length_cons, Fin.zero_eta, List.insertionSort]
conv_lhs => simp [HepLean.List.insertionSortEquiv]
erw [orderedInsertEquiv_sigma]
rw [ih]
simp only [HepLean.Fin.equivCons_trans, Nat.succ_eq_add_one,
HepLean.Fin.equivCons_castOrderIso, List.length_cons, Nat.add_zero, Nat.zero_eq,
Fin.zero_eta]
ext x
conv_rhs => simp [HepLean.List.insertionSortEquiv]
simp only [Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, Fin.cast_trans,
Fin.coe_cast]
have h2' (i : Σ i, f i) (l' : List (Σ i, f i)) :
List.map (fun i => i.1) (List.orderedInsert (fun i j => le i.fst j.fst) i l') =
List.orderedInsert le i.1 (List.map (fun i => i.1) l') := by
induction l' with
| nil =>
simp [HepLean.List.orderedInsertEquiv]
| cons j l' ih' =>
by_cases hij : (fun i j => le i.fst j.fst) i j
· rw [List.orderedInsert_of_le]
· erw [List.orderedInsert_of_le]
· simp
· exact hij
· exact hij
· simp only [List.orderedInsert, hij, ↓reduceIte, List.unzip_snd, List.map_cons]
simp only [↓reduceIte, List.cons.injEq, true_and]
simpa using ih'
have h2 (l' : List (Σ i, f i)) :
List.map (fun i => i.1) (List.insertionSort (fun i j => le i.fst j.fst) l') =
List.insertionSort le (List.map (fun i => i.1) l') := by
induction l' with
| nil =>
simp [HepLean.List.orderedInsertEquiv]
| cons i l' ih' =>
simp only [List.insertionSort, List.unzip_snd]
simp only [List.unzip_snd] at h2'
rw [h2']
congr
rw [HepLean.List.orderedInsertEquiv_congr _ _ _ (h2 _)]
simp only [List.length_cons, Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
Fin.cast_trans, Fin.coe_cast]
have h3 : (List.insertionSort le (List.map (fun i => i.1) a.tail.toList)) =
List.insertionSort le l := by
congr
have h3' (l : List 𝓕) (a : CreateAnnihilateSect f l) :
List.map (fun i => i.1) a.toList = l := by
induction l with
| nil => rfl
| cons i l ih' =>
simp only [toList, List.length_cons, Fin.zero_eta, Prod.mk.eta,
List.unzip_snd, List.map_cons, List.cons.injEq, true_and]
simpa using ih' _
rw [h3']
rfl
rw [HepLean.List.orderedInsertEquiv_congr _ _ _ h3]
simp only [List.length_cons, Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
Fin.cast_trans, Fin.cast_eq_self, Fin.coe_cast]
rfl
/-- Given a section for `l` the corresponding section
for `List.insertionSort le1 l`. -/
def sort :
CreateAnnihilateSect f (List.insertionSort le l) :=
Equiv.piCongr (HepLean.List.insertionSortEquiv le l) (fun i => (Equiv.cast (by
congr 1
rw [← HepLean.List.insertionSortEquiv_get]
simp))) a
lemma sort_toList :
(a.sort le).toList = List.insertionSort (fun i j => le i.fst j.fst) a.toList := by
let l1 := List.insertionSort (fun i j => le i.fst j.fst) a.toList
let l2 := (a.sort le).toList
symm
change l1 = l2
have hlen : l1.length = l2.length := by
simp [l1, l2]
have hget : l1.get = l2.get ∘ Fin.cast hlen := by
rw [← HepLean.List.insertionSortEquiv_get]
rw [toList_get, toList_get]
funext i
rw [insertionSortEquiv_toList]
simp only [Function.comp_apply, Equiv.symm_trans_apply,
OrderIso.toEquiv_symm, Fin.symm_castOrderIso, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
Fin.cast_trans, Fin.cast_eq_self, id_eq, eq_mpr_eq_cast, Fin.coe_cast, Sigma.mk.inj_iff]
apply And.intro
· have h1 := congrFun (HepLean.List.insertionSortEquiv_get (r := le) l) (Fin.cast (by simp) i)
rw [← h1]
simp
· simp only [List.get_eq_getElem, sort, Equiv.piCongr, Equiv.trans_apply, Fin.coe_cast,
Equiv.piCongrLeft_apply, Equiv.piCongrRight_apply, Pi.map_apply, Equiv.cast_apply,
heq_eqRec_iff_heq]
exact (cast_heq _ _).symm
apply List.ext_get hlen
rw [hget]
simp
end toList_sign_conditions
end CreateAnnihilateSect
end Wick