refactor: Update order in tensor trees
This commit is contained in:
parent
297557bbb8
commit
da6679ea90
1 changed files with 12 additions and 12 deletions
|
@ -555,24 +555,24 @@ end TensorSpecies
|
|||
inductive TensorTree (S : TensorSpecies) : {n : ℕ} → (Fin n → S.C) → Type where
|
||||
/-- A general tensor node. -/
|
||||
| tensorNode {n : ℕ} {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) : TensorTree S c
|
||||
/-- A node correpsonding to the scalar multiple of a tensor by a element of the field. -/
|
||||
| smul {n : ℕ} {c : Fin n → S.C} : S.k → TensorTree S c → TensorTree S c
|
||||
/-- A node corresponding to negation of a tensor. -/
|
||||
| neg {n : ℕ} {c : Fin n → S.C} : TensorTree S c → TensorTree S c
|
||||
/-- A node corresponding to the addition of two tensors. -/
|
||||
| add {n : ℕ} {c : Fin n → S.C} : TensorTree S c → TensorTree S c → TensorTree S c
|
||||
/-- A node correpsonding to the action of a group element on a tensor. -/
|
||||
| action {n : ℕ} {c : Fin n → S.C} : S.G → TensorTree S c → TensorTree S c
|
||||
/-- A node corresponding to the permutation of indices of a tensor. -/
|
||||
| perm {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
||||
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t : TensorTree S c) : TensorTree S c1
|
||||
/-- A node corresponding to the product of two tensors. -/
|
||||
| prod {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
||||
(t : TensorTree S c) (t1 : TensorTree S c1) : TensorTree S (Sum.elim c c1 ∘ finSumFinEquiv.symm)
|
||||
/-- A node correpsonding to the scalar multiple of a tensor by a element of the field. -/
|
||||
| smul {n : ℕ} {c : Fin n → S.C} : S.k → TensorTree S c → TensorTree S c
|
||||
/-- A node corresponding to negation of a tensor. -/
|
||||
| neg {n : ℕ} {c : Fin n → S.C} : TensorTree S c → TensorTree S c
|
||||
/-- A node corresponding to the contraction of indices of a tensor. -/
|
||||
| contr {n : ℕ} {c : Fin n.succ.succ → S.C} : (i : Fin n.succ.succ) →
|
||||
(j : Fin n.succ) → (h : c (i.succAbove j) = S.τ (c i)) → TensorTree S c →
|
||||
TensorTree S (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
|
||||
/-- A node correpsonding to the action of a group element on a tensor. -/
|
||||
| action {n : ℕ} {c : Fin n → S.C} : S.G → TensorTree S c → TensorTree S c
|
||||
/-- A node corresponding to the evaluation of an index of a tensor. -/
|
||||
| eval {n : ℕ} {c : Fin n.succ → S.C} : (i : Fin n.succ) → (x : ℕ) → TensorTree S c →
|
||||
TensorTree S (c ∘ Fin.succAbove i)
|
||||
|
@ -660,7 +660,7 @@ abbrev constThreeNodeE (S : TensorSpecies) (c1 c2 c3 : S.C)
|
|||
|
||||
-/
|
||||
/-- The number of nodes in a tensor tree. -/
|
||||
def size : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTree S c → ℕ := fun
|
||||
def size {n : ℕ} {c : Fin n → S.C} : TensorTree S c → ℕ := fun
|
||||
| tensorNode _ => 1
|
||||
| add t1 t2 => t1.size + t2.size + 1
|
||||
| perm _ t => t.size + 1
|
||||
|
@ -674,17 +674,17 @@ def size : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTree S c → ℕ := fun
|
|||
noncomputable section
|
||||
|
||||
/-- The underlying tensor a tensor tree corresponds to. -/
|
||||
def tensor : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTree S c → S.F.obj (OverColor.mk c) := fun
|
||||
def tensor {n : ℕ} {c : Fin n → S.C} : TensorTree S c → S.F.obj (OverColor.mk c) := fun
|
||||
| tensorNode t => t
|
||||
| add t1 t2 => t1.tensor + t2.tensor
|
||||
| perm σ t => (S.F.map σ).hom t.tensor
|
||||
| neg t => - t.tensor
|
||||
| smul a t => a • t.tensor
|
||||
| neg t => - t.tensor
|
||||
| add t1 t2 => t1.tensor + t2.tensor
|
||||
| action g t => (S.F.obj (OverColor.mk _)).ρ g t.tensor
|
||||
| perm σ t => (S.F.map σ).hom t.tensor
|
||||
| prod t1 t2 => (S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom
|
||||
((S.F.μ _ _).hom (t1.tensor ⊗ₜ t2.tensor))
|
||||
| contr i j h t => (S.contrMap _ i j h).hom t.tensor
|
||||
| eval i e t => (S.evalMap i (Fin.ofNat' _ e)) t.tensor
|
||||
| action g t => (S.F.obj (OverColor.mk _)).ρ g t.tensor
|
||||
|
||||
/-- Takes a tensor tree based on `Fin 0`, into the field `S.k`. -/
|
||||
def field {c : Fin 0 → S.C} (t : TensorTree S c) : S.k := S.castFin0ToField t.tensor
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue