diff --git a/PhysLean/Particles/StandardModel/HiggsBoson/Basic.lean b/PhysLean/Particles/StandardModel/HiggsBoson/Basic.lean index 13afdac..411a9b6 100644 --- a/PhysLean/Particles/StandardModel/HiggsBoson/Basic.lean +++ b/PhysLean/Particles/StandardModel/HiggsBoson/Basic.lean @@ -36,7 +36,8 @@ open SpaceTime In other words, the target space of the Higgs field. -/ -/-- The complex vector space in which the Higgs field takes values. -/ +/-- The vector space `HiggsVec` is defined to be the complex Euclidean space of dimension 2. + For a given spacetime point a Higgs field gives a value in `HiggsVec`. -/ abbrev HiggsVec := EuclideanSpace ā (Fin 2) namespace HiggsVec @@ -80,14 +81,19 @@ We also define the Higgs bundle. -/ TODO "Make `HiggsBundle` an associated bundle." -/-- The trivial vector bundle 𔲠à ā². -/ + +/-- The `HiggsBundle` is defined as the trivial vector bundle with base `SpaceTime` and + fiber `HiggsVec`. Thus as a manifold it corresponds to `āā“ Ć ā²`. -/ abbrev HiggsBundle := Bundle.Trivial SpaceTime HiggsVec /-- The instance of a smooth vector bundle with total space `HiggsBundle` and fiber `HiggsVec`. -/ instance : ContMDiffVectorBundle ⤠HiggsVec HiggsBundle SpaceTime.asSmoothManifold := Bundle.Trivial.contMDiffVectorBundle HiggsVec -/-- A Higgs field is a smooth section of the Higgs bundle. -/ +/-- The type `HiggsField` is defined such that elements are smooth sections of the trivial + vector bundle `HiggsBundle`. Such elements are Higgs fields. Since `HiggsField` is + trivial as a vector bundle, a Higgs field is equivalent to a smooth map + from `SpaceTime` to `HiggsVec`. -/ abbrev HiggsField : Type := ContMDiffSection SpaceTime.asSmoothManifold HiggsVec ⤠HiggsBundle /-- Given a vector in `HiggsVec` the constant Higgs field with value equal to that diff --git a/PhysLean/Particles/StandardModel/HiggsBoson/PointwiseInnerProd.lean b/PhysLean/Particles/StandardModel/HiggsBoson/PointwiseInnerProd.lean index 823d220..911c15f 100644 --- a/PhysLean/Particles/StandardModel/HiggsBoson/PointwiseInnerProd.lean +++ b/PhysLean/Particles/StandardModel/HiggsBoson/PointwiseInnerProd.lean @@ -109,12 +109,15 @@ lemma smooth_innerProd (Ļ1 Ļ2 : HiggsField) : ContMDiff š(ā, SpaceTime) -/ -/-- Given a `HiggsField`, the map `SpaceTime ā ā` obtained by taking the square norm of the - pointwise Higgs vector. -/ +/-- Given an element `Ļ` of `HiggsField`, `normSq Ļ` is defined as the + the function `SpaceTime ā ā` obtained by taking the square norm of the + pointwise Higgs vector. In other words, `normSq Ļ x = āĻ xā ^ 2`. + + The notation `āĻā_H^2` is used for the `normSq Ļ` -/ @[simp] def normSq (Ļ : HiggsField) : SpaceTime ā ā := fun x => āĻ xā ^ 2 -/-- Notation for the norm squared of a Higgs field. -/ +@[inherit_doc normSq] scoped[StandardModel.HiggsField] notation "ā" Ļ1 "ā_H^2" => normSq Ļ1 /-! diff --git a/PhysLean/Particles/StandardModel/HiggsBoson/Potential.lean b/PhysLean/Particles/StandardModel/HiggsBoson/Potential.lean index 6234dab..778c471 100644 --- a/PhysLean/Particles/StandardModel/HiggsBoson/Potential.lean +++ b/PhysLean/Particles/StandardModel/HiggsBoson/Potential.lean @@ -31,7 +31,9 @@ open SpaceTime -/ -/-- The parameters of the Higgs potential. -/ +/-- The structure `Potential` is defined with two fields, `μ2` corresponding + to the mass-squared of the Higgs boson, and `l` corresponding to the coefficent + of the quartic term in the Higgs potential. Note that `l` is usually denoted `Ī»`. -/ structure Potential where /-- The mass-squared of the Higgs boson. -/ μ2 : ā @@ -42,7 +44,10 @@ namespace Potential variable (P : Potential) -/-- The function corresponding to the Higgs potential. -/ +/-- Given a element `P` of `Potential`, `P.toFun` is Higgs potential. + It is defined for a Higgs field `Ļ` and a spacetime point `x` as + + `-μ² āĻā_H^2 x + l * āĻā_H^2 x * āĻā_H^2 x`. -/ def toFun (Ļ : HiggsField) (x : SpaceTime) : ā := - P.μ2 * āĻā_H^2 x + P.šµ * āĻā_H^2 x * āĻā_H^2 x @@ -156,6 +161,10 @@ lemma quadDiscrim_eq_zero_iff_normSq (h : P.šµ ā 0) (Ļ : HiggsField) (x : S field_simp ring +/-- For an element `P` of `Potential`, if `l < 0` then the following upper bound for the potential + exists + + `P.toFun Ļ x ⤠- μ2 ^ 2 / (4 * šµ)`. -/ lemma neg_šµ_quadDiscrim_zero_bound (h : P.šµ < 0) (Ļ : HiggsField) (x : SpaceTime) : P.toFun Ļ x ⤠- P.μ2 ^ 2 / (4 * P.šµ) := by have h1 := P.quadDiscrim_nonneg (ne_of_lt h) Ļ x @@ -167,6 +176,10 @@ lemma neg_šµ_quadDiscrim_zero_bound (h : P.šµ < 0) (Ļ : HiggsField) (x : Sp ring_nf at h2 ⢠exact h2 +/-- For an element `P` of `Potential`, if `0 < l` then the following lower bound for the potential + exists + + `- μ2 ^ 2 / (4 * šµ) ⤠P.toFun Ļ x`. -/ lemma pos_šµ_quadDiscrim_zero_bound (h : 0 < P.šµ) (Ļ : HiggsField) (x : SpaceTime) : - P.μ2 ^ 2 / (4 * P.šµ) ⤠P.toFun Ļ x := by have h1 := P.neg.neg_šµ_quadDiscrim_zero_bound (by simpa [neg] using h) Ļ x @@ -196,6 +209,14 @@ lemma pos_šµ_toFun_pos (h : 0 < P.šµ) (Ļ : HiggsField) (x : SpaceTime) : (P.μ2 < 0 ā§ 0 ⤠P.toFun Ļ x) ⨠0 ⤠P.μ2 := by simpa using P.neg.neg_šµ_toFun_neg (by simpa using h) Ļ x +/-- For an element `P` of `Potential` with `l < 0` and a real `c : ā`, there exists + a Higgs field `Ļ` and a spacetime point `x` such that `P.toFun Ļ x = c` iff one of the + following two conditions hold: +- `0 < μ2` and `c ⤠0`. That is, if `l` is negative and `μ2` positive, then the potential + takes every non-positive value. +- or `μ2 ⤠0` and `c ⤠- μ2 ^ 2 / (4 * šµ)`. That is, if `l` is negative and `μ2` non-positive, + then the potential takes every value less then or equal to its bound. +-/ lemma neg_šµ_sol_exists_iff (hšµ : P.šµ < 0) (c : ā) : (ā Ļ x, P.toFun Ļ x = c) ā (0 < P.μ2 ā§ c ⤠0) ⨠(P.μ2 ⤠0 ā§ c ⤠- P.μ2 ^ 2 / (4 * P.šµ)) := by refine Iff.intro (fun āØĻ, x, hVā© => ?_) (fun h => ?_) @@ -250,6 +271,14 @@ lemma neg_šµ_sol_exists_iff (hšµ : P.šµ < 0) (c : ā) : (ā Ļ x, P.toFu refine (quadratic_eq_zero_iff (ne_of_gt hšµ).symm hdd _).mpr ?_ simp only [neg_neg, or_true, a] +/-- For an element `P` of `Potential` with `0 < l` and a real `c : ā`, there exists + a Higgs field `Ļ` and a spacetime point `x` such that `P.toFun Ļ x = c` iff one of the + following two conditions hold: +- `μ2 < 0` and `0 ⤠c`. That is, if `l` is positive and `μ2` negative, then the potential + takes every non-negative value. +- or `0 ⤠μ2` and `- μ2 ^ 2 / (4 * šµ) ⤠c`. That is, if `l` is positive and `μ2` non-negative, + then the potential takes every value greater then or equal to its bound. +-/ lemma pos_šµ_sol_exists_iff (hšµ : 0 < P.šµ) (c : ā) : (ā Ļ x, P.toFun Ļ x = c) ā (P.μ2 < 0 ā§ 0 ⤠c) ⨠(0 ⤠P.μ2 ā§ - P.μ2 ^ 2 / (4 * P.šµ) ⤠c) := by have h1 := P.neg.neg_šµ_sol_exists_iff (by simpa using hšµ) (- c) @@ -264,11 +293,16 @@ lemma pos_šµ_sol_exists_iff (hšµ : 0 < P.šµ) (c : ā) : (ā Ļ x, P.toFu -/ -/-- The proposition on the coefficients for a potential to be bounded. -/ +/-- Given a element `P` of `Potential`, the proposition `IsBounded P` is true if and only if + there exists a real `c` such that for all Higgs fields `Ļ` and spacetime points `x`, + the Higgs potential corresponding to `Ļ` at `x` is greater then or equal to`c`. I.e. + + `ā Φ x, c ⤠P.toFun Φ x`. -/ def IsBounded : Prop := ā c, ā Φ x, c ⤠P.toFun Φ x -/-- If the potential is bounded, then `P.šµ` is non-negative. -/ +/-- Given a element `P` of `Potential` which is bounded, + the quartic coefficent `šµ` of `P` is non-negative. -/ lemma isBounded_šµ_nonneg (h : P.IsBounded) : 0 ⤠P.šµ := by by_contra hl rw [not_le] at hl @@ -313,7 +347,7 @@ lemma isBounded_šµ_nonneg (h : P.IsBounded) : 0 ⤠P.šµ := by rw [hĻ] at hc2 linarith -/-- If `P.šµ` is positive, then the potential is bounded. -/ +/-- Given a element `P` of `Potential` with `0 < šµ`, then the potential is bounded. -/ lemma isBounded_of_šµ_pos (h : 0 < P.šµ) : P.IsBounded := by simp only [IsBounded] have h2 := P.pos_šµ_quadDiscrim_zero_bound h @@ -401,6 +435,12 @@ lemma isMinOn_iff_field_of_μSq_nonneg_šµ_pos (hšµ : 0 < P.šµ) (hμ2 : 0 rw [P.isMinOn_iff_of_μSq_nonneg_šµ_pos hšµ hμ2 Ļ x, ā P.quadDiscrim_eq_zero_iff_normSq (Ne.symm (ne_of_lt hšµ)), P.quadDiscrim_eq_zero_iff (Ne.symm (ne_of_lt hšµ))] +/-- Given an element `P` of `Potential` with `0 < l`, then the Higgs field `Ļ` and + spacetime point `x` minimize the potential if and only if one of the following conditions + holds +- `0 ⤠μ2` and `āĻā_H^2 x = μ2 / (2 * šµ)`. +- or `μ2 < 0` and `Ļ x = 0`. +-/ theorem isMinOn_iff_field_of_šµ_pos (hšµ : 0 < P.šµ) (Ļ : HiggsField) (x : SpaceTime) : IsMinOn (fun (Ļ, x) => P.toFun Ļ x) Set.univ (Ļ, x) ā (0 ⤠P.μ2 ā§ āĻā_H^2 x = P.μ2 /(2 * P.šµ)) ⨠(P.μ2 < 0 ā§ Ļ x = 0) := by @@ -415,6 +455,12 @@ lemma isMaxOn_iff_isMinOn_neg (Ļ : HiggsField) (x : SpaceTime) : rw [isMaxOn_univ_iff, isMinOn_univ_iff] simp_all only [Prod.forall, neg_le_neg_iff] +/-- Given an element `P` of `Potential` with `l < 0`, then the Higgs field `Ļ` and + spacetime point `x` maximizes the potential if and only if one of the following conditions + holds +- `μ2 ⤠0` and `āĻā_H^2 x = μ2 / (2 * šµ)`. +- or `0 < μ2` and `Ļ x = 0`. +-/ lemma isMaxOn_iff_field_of_šµ_neg (hšµ : P.šµ < 0) (Ļ : HiggsField) (x : SpaceTime) : IsMaxOn (fun (Ļ, x) => P.toFun Ļ x) Set.univ (Ļ, x) ā (P.μ2 ⤠0 ā§ āĻā_H^2 x = P.μ2 /(2 * P.šµ)) ⨠(0 < P.μ2 ā§ Ļ x = 0) := by diff --git a/PhysLean/Relativity/Lorentz/MinkowskiMatrix.lean b/PhysLean/Relativity/Lorentz/MinkowskiMatrix.lean index fbc57ae..3341eb4 100644 --- a/PhysLean/Relativity/Lorentz/MinkowskiMatrix.lean +++ b/PhysLean/Relativity/Lorentz/MinkowskiMatrix.lean @@ -18,6 +18,7 @@ open InnerProductSpace # The definition of the Minkowski Matrix -/ + /-- The `d.succ`-dimensional real matrix of the form `diag(1, -1, -1, -1, ...)`. -/ def minkowskiMatrix {d : ā} : Matrix (Fin 1 ā Fin d) (Fin 1 ā Fin d) ā := LieAlgebra.Orthogonal.indefiniteDiagonal (Fin 1) (Fin d) ā diff --git a/README.md b/README.md index e91e49a..5f0e26b 100644 --- a/README.md +++ b/README.md @@ -12,7 +12,7 @@ A project to digitalize physics. -*(Formally called HepLean)* +*(Formerly called HepLean)* ## Aims of this project šÆ __Digitalize__ results (meaning calculations, definitions, and theorems) from physics diff --git a/docs/CuratedNotes/index.html b/docs/CuratedNotes/index.html index a599968..64d5dbf 100644 --- a/docs/CuratedNotes/index.html +++ b/docs/CuratedNotes/index.html @@ -20,7 +20,7 @@ layout: default
The formalization of properties of the Higgs potential.
Read More ā