feat: Add properties of Lorentz group
This commit is contained in:
parent
b9c20861d1
commit
db0f6de59c
2 changed files with 173 additions and 21 deletions
|
@ -13,7 +13,7 @@ This file defines the Gamma matrices.
|
|||
|
||||
- Prove that the algebra generated by the gamma matrices is ismorphic to the
|
||||
Clifford algebra assocaited with spacetime.
|
||||
-
|
||||
- Include relations for gamma matrices.
|
||||
-/
|
||||
|
||||
namespace StandardModel
|
||||
|
@ -41,22 +41,9 @@ def γ : Fin 4 → Matrix (Fin 4) (Fin 4) ℂ := ![γ0, γ1, γ2, γ3]
|
|||
|
||||
namespace γ
|
||||
|
||||
variable (μ : Fin 4)
|
||||
|
||||
|
||||
|
||||
|
||||
/-- The trace of the gamma matrices is zero. -/
|
||||
lemma trace_eq_zero (μ : Fin 4) : Matrix.trace (γ μ) = 0 := by
|
||||
fin_cases μ
|
||||
<;> simp [γ, γ0, γ1, γ2, γ3]
|
||||
<;> rw [Matrix.trace, Fin.sum_univ_four]
|
||||
<;> simp
|
||||
any_goals rfl
|
||||
change 0 + 0 = 0
|
||||
simp [add_zero]
|
||||
|
||||
open spaceTime
|
||||
|
||||
variable (μ ν : Fin 4)
|
||||
|
||||
@[simp]
|
||||
def γSet : Set (Matrix (Fin 4) (Fin 4) ℂ) := {γ i | i : Fin 4}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue