small amount of golfing

This commit is contained in:
jstoobysmith 2024-06-09 14:33:56 -04:00
parent 1cb2cdfd11
commit dbd2db267a

View file

@ -13,6 +13,12 @@ import Mathlib.Analysis.InnerProductSpace.Adjoint
/-!
# The Lorentz Algebra
We define
- Define `lorentzAlgebra` via `LieAlgebra.Orthogonal.so'` as a subalgebra of
`Matrix (Fin 4) (Fin 4) `.
- In `mem_iff` prove that a matrix is in the Lorentz algebra if and only if it satisfies the
condition `Aᵀ * η = - η * A`.
-/
@ -26,61 +32,45 @@ def lorentzAlgebra : LieSubalgebra (Matrix (Fin 4) (Fin 4) ) :=
LieSubalgebra.map (Matrix.reindexLieEquiv (@finSumFinEquiv 1 3)).toLieHom
(LieAlgebra.Orthogonal.so' (Fin 1) (Fin 3) )
namespace lorentzAlgebra
lemma transpose_eta (A : lorentzAlgebra) : A.1ᵀ * η = - η * A.1 := by
have h := A.2
simp [lorentzAlgebra] at h
obtain ⟨B, hB1, hB2⟩ := h
simp [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] at hB1
obtain ⟨B, hB1, hB2⟩ := A.2
apply (Equiv.apply_eq_iff_eq
(Matrix.reindexAlgEquiv (@finSumFinEquiv 1 3).symm).toEquiv).mp
erw [Matrix.reindexAlgEquiv_mul]
simp only [Nat.reduceAdd, reindexAlgEquiv_apply, Equiv.symm_symm, AlgEquiv.toEquiv_eq_coe,
EquivLike.coe_coe, map_neg, _root_.map_mul]
rw [← Matrix.transpose_reindex]
have h1 : (reindex finSumFinEquiv.symm finSumFinEquiv.symm) A = B :=
(Equiv.apply_eq_iff_eq_symm_apply (reindex finSumFinEquiv.symm finSumFinEquiv.symm)).mpr
(id hB2.symm)
rw [h1]
simp only [Nat.reduceAdd, AlgEquiv.toEquiv_eq_coe, EquivLike.coe_coe, _root_.map_mul,
reindexAlgEquiv_apply, ← transpose_reindex, map_neg]
rw [(Equiv.apply_eq_iff_eq_symm_apply (reindex finSumFinEquiv.symm finSumFinEquiv.symm)).mpr
hB2.symm]
erw [η_reindex]
simpa using hB1
simpa [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] using hB1
lemma mem_of_transpose_eta_eq_eta_mul_self {A : Matrix (Fin 4) (Fin 4) }
(h : Aᵀ * η = - η * A) : A ∈ lorentzAlgebra := by
simp [lorentzAlgebra]
simp only [lorentzAlgebra, Nat.reduceAdd, LieSubalgebra.mem_map]
use (Matrix.reindexLieEquiv (@finSumFinEquiv 1 3)).symm A
apply And.intro
swap
change (reindexLieEquiv finSumFinEquiv) _ = _
simp only [Nat.reduceAdd, reindexLieEquiv_symm, reindexLieEquiv_apply, reindex_apply,
· have h1 := (Equiv.apply_eq_iff_eq
(Matrix.reindexAlgEquiv (@finSumFinEquiv 1 3).symm).toEquiv).mpr h
erw [Matrix.reindexAlgEquiv_mul] at h1
simp only [Nat.reduceAdd, reindexAlgEquiv_apply, Equiv.symm_symm, AlgEquiv.toEquiv_eq_coe,
EquivLike.coe_coe, map_neg, _root_.map_mul] at h1
erw [η_reindex] at h1
simpa [Nat.reduceAdd, reindexLieEquiv_symm, reindexLieEquiv_apply,
LieAlgebra.Orthogonal.so', mem_skewAdjointMatricesLieSubalgebra,
mem_skewAdjointMatricesSubmodule, IsSkewAdjoint, IsAdjointPair, mul_neg] using h1
· change (reindexLieEquiv finSumFinEquiv) _ = _
simp only [Nat.reduceAdd, reindexLieEquiv_symm, reindexLieEquiv_apply, reindex_apply,
Equiv.symm_symm, submatrix_submatrix, Equiv.self_comp_symm, submatrix_id_id]
simp only [Nat.reduceAdd, reindexLieEquiv_symm, reindexLieEquiv_apply,
LieAlgebra.Orthogonal.so', mem_skewAdjointMatricesLieSubalgebra,
mem_skewAdjointMatricesSubmodule, IsSkewAdjoint, IsAdjointPair, mul_neg]
have h1 := (Equiv.apply_eq_iff_eq
(Matrix.reindexAlgEquiv (@finSumFinEquiv 1 3).symm).toEquiv).mpr h
erw [Matrix.reindexAlgEquiv_mul] at h1
simp only [Nat.reduceAdd, reindexAlgEquiv_apply, Equiv.symm_symm, AlgEquiv.toEquiv_eq_coe,
EquivLike.coe_coe, map_neg, _root_.map_mul] at h1
erw [η_reindex] at h1
simpa using h1
lemma mem_iff {A : Matrix (Fin 4) (Fin 4) } : A ∈ lorentzAlgebra ↔
Aᵀ * η = - η * A := by
apply Iff.intro
· intro h
exact transpose_eta ⟨A, h⟩
· intro h
exact mem_of_transpose_eta_eq_eta_mul_self h
lemma mem_iff {A : Matrix (Fin 4) (Fin 4) } : A ∈ lorentzAlgebra ↔ Aᵀ * η = - η * A :=
Iff.intro (fun h => transpose_eta ⟨A, h⟩) (fun h => mem_of_transpose_eta_eq_eta_mul_self h)
lemma mem_iff' (A : Matrix (Fin 4) (Fin 4) ) : A ∈ lorentzAlgebra ↔ A = - η * Aᵀ * η := by
apply Iff.intro
intro h
rw [mul_assoc, mem_iff.mp h]
simp only [neg_mul, mul_neg, ← mul_assoc, η_sq, one_mul, neg_neg]
simp_rw [mul_assoc, mem_iff.mp h, neg_mul, mul_neg, ← mul_assoc, η_sq, one_mul, neg_neg]
intro h
rw [mem_iff]
nth_rewrite 2 [h]
@ -109,7 +99,4 @@ instance spaceTimeAsLieModule : LieModule lorentzAlgebra spaceTime where
rw [mulVec_smul]
end spaceTime