small amount of golfing
This commit is contained in:
parent
1cb2cdfd11
commit
dbd2db267a
1 changed files with 27 additions and 40 deletions
|
@ -13,6 +13,12 @@ import Mathlib.Analysis.InnerProductSpace.Adjoint
|
|||
/-!
|
||||
# The Lorentz Algebra
|
||||
|
||||
We define
|
||||
|
||||
- Define `lorentzAlgebra` via `LieAlgebra.Orthogonal.so'` as a subalgebra of
|
||||
`Matrix (Fin 4) (Fin 4) ℝ`.
|
||||
- In `mem_iff` prove that a matrix is in the Lorentz algebra if and only if it satisfies the
|
||||
condition `Aᵀ * η = - η * A`.
|
||||
|
||||
-/
|
||||
|
||||
|
@ -26,61 +32,45 @@ def lorentzAlgebra : LieSubalgebra ℝ (Matrix (Fin 4) (Fin 4) ℝ) :=
|
|||
LieSubalgebra.map (Matrix.reindexLieEquiv (@finSumFinEquiv 1 3)).toLieHom
|
||||
(LieAlgebra.Orthogonal.so' (Fin 1) (Fin 3) ℝ)
|
||||
|
||||
|
||||
namespace lorentzAlgebra
|
||||
|
||||
lemma transpose_eta (A : lorentzAlgebra) : A.1ᵀ * η = - η * A.1 := by
|
||||
have h := A.2
|
||||
simp [lorentzAlgebra] at h
|
||||
obtain ⟨B, hB1, hB2⟩ := h
|
||||
simp [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] at hB1
|
||||
obtain ⟨B, hB1, hB2⟩ := A.2
|
||||
apply (Equiv.apply_eq_iff_eq
|
||||
(Matrix.reindexAlgEquiv ℝ (@finSumFinEquiv 1 3).symm).toEquiv).mp
|
||||
erw [Matrix.reindexAlgEquiv_mul]
|
||||
simp only [Nat.reduceAdd, reindexAlgEquiv_apply, Equiv.symm_symm, AlgEquiv.toEquiv_eq_coe,
|
||||
EquivLike.coe_coe, map_neg, _root_.map_mul]
|
||||
rw [← Matrix.transpose_reindex]
|
||||
have h1 : (reindex finSumFinEquiv.symm finSumFinEquiv.symm) A = B :=
|
||||
(Equiv.apply_eq_iff_eq_symm_apply (reindex finSumFinEquiv.symm finSumFinEquiv.symm)).mpr
|
||||
(id hB2.symm)
|
||||
rw [h1]
|
||||
simp only [Nat.reduceAdd, AlgEquiv.toEquiv_eq_coe, EquivLike.coe_coe, _root_.map_mul,
|
||||
reindexAlgEquiv_apply, ← transpose_reindex, map_neg]
|
||||
rw [(Equiv.apply_eq_iff_eq_symm_apply (reindex finSumFinEquiv.symm finSumFinEquiv.symm)).mpr
|
||||
hB2.symm]
|
||||
erw [η_reindex]
|
||||
simpa using hB1
|
||||
simpa [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] using hB1
|
||||
|
||||
lemma mem_of_transpose_eta_eq_eta_mul_self {A : Matrix (Fin 4) (Fin 4) ℝ}
|
||||
(h : Aᵀ * η = - η * A) : A ∈ lorentzAlgebra := by
|
||||
simp [lorentzAlgebra]
|
||||
simp only [lorentzAlgebra, Nat.reduceAdd, LieSubalgebra.mem_map]
|
||||
use (Matrix.reindexLieEquiv (@finSumFinEquiv 1 3)).symm A
|
||||
apply And.intro
|
||||
swap
|
||||
change (reindexLieEquiv finSumFinEquiv) _ = _
|
||||
simp only [Nat.reduceAdd, reindexLieEquiv_symm, reindexLieEquiv_apply, reindex_apply,
|
||||
· have h1 := (Equiv.apply_eq_iff_eq
|
||||
(Matrix.reindexAlgEquiv ℝ (@finSumFinEquiv 1 3).symm).toEquiv).mpr h
|
||||
erw [Matrix.reindexAlgEquiv_mul] at h1
|
||||
simp only [Nat.reduceAdd, reindexAlgEquiv_apply, Equiv.symm_symm, AlgEquiv.toEquiv_eq_coe,
|
||||
EquivLike.coe_coe, map_neg, _root_.map_mul] at h1
|
||||
erw [η_reindex] at h1
|
||||
simpa [Nat.reduceAdd, reindexLieEquiv_symm, reindexLieEquiv_apply,
|
||||
LieAlgebra.Orthogonal.so', mem_skewAdjointMatricesLieSubalgebra,
|
||||
mem_skewAdjointMatricesSubmodule, IsSkewAdjoint, IsAdjointPair, mul_neg] using h1
|
||||
· change (reindexLieEquiv finSumFinEquiv) _ = _
|
||||
simp only [Nat.reduceAdd, reindexLieEquiv_symm, reindexLieEquiv_apply, reindex_apply,
|
||||
Equiv.symm_symm, submatrix_submatrix, Equiv.self_comp_symm, submatrix_id_id]
|
||||
simp only [Nat.reduceAdd, reindexLieEquiv_symm, reindexLieEquiv_apply,
|
||||
LieAlgebra.Orthogonal.so', mem_skewAdjointMatricesLieSubalgebra,
|
||||
mem_skewAdjointMatricesSubmodule, IsSkewAdjoint, IsAdjointPair, mul_neg]
|
||||
have h1 := (Equiv.apply_eq_iff_eq
|
||||
(Matrix.reindexAlgEquiv ℝ (@finSumFinEquiv 1 3).symm).toEquiv).mpr h
|
||||
erw [Matrix.reindexAlgEquiv_mul] at h1
|
||||
simp only [Nat.reduceAdd, reindexAlgEquiv_apply, Equiv.symm_symm, AlgEquiv.toEquiv_eq_coe,
|
||||
EquivLike.coe_coe, map_neg, _root_.map_mul] at h1
|
||||
erw [η_reindex] at h1
|
||||
simpa using h1
|
||||
|
||||
|
||||
lemma mem_iff {A : Matrix (Fin 4) (Fin 4) ℝ} : A ∈ lorentzAlgebra ↔
|
||||
Aᵀ * η = - η * A := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
exact transpose_eta ⟨A, h⟩
|
||||
· intro h
|
||||
exact mem_of_transpose_eta_eq_eta_mul_self h
|
||||
lemma mem_iff {A : Matrix (Fin 4) (Fin 4) ℝ} : A ∈ lorentzAlgebra ↔ Aᵀ * η = - η * A :=
|
||||
Iff.intro (fun h => transpose_eta ⟨A, h⟩) (fun h => mem_of_transpose_eta_eq_eta_mul_self h)
|
||||
|
||||
lemma mem_iff' (A : Matrix (Fin 4) (Fin 4) ℝ) : A ∈ lorentzAlgebra ↔ A = - η * Aᵀ * η := by
|
||||
apply Iff.intro
|
||||
intro h
|
||||
rw [mul_assoc, mem_iff.mp h]
|
||||
simp only [neg_mul, mul_neg, ← mul_assoc, η_sq, one_mul, neg_neg]
|
||||
simp_rw [mul_assoc, mem_iff.mp h, neg_mul, mul_neg, ← mul_assoc, η_sq, one_mul, neg_neg]
|
||||
intro h
|
||||
rw [mem_iff]
|
||||
nth_rewrite 2 [h]
|
||||
|
@ -109,7 +99,4 @@ instance spaceTimeAsLieModule : LieModule ℝ lorentzAlgebra spaceTime where
|
|||
rw [mulVec_smul]
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
end spaceTime
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue