From dbd2db267a330687d3015e3f7584c6911206f575 Mon Sep 17 00:00:00 2001 From: jstoobysmith <72603918+jstoobysmith@users.noreply.github.com> Date: Sun, 9 Jun 2024 14:33:56 -0400 Subject: [PATCH] small amount of golfing --- HepLean/SpaceTime/LorentzAlgebra/Basic.lean | 67 +++++++++------------ 1 file changed, 27 insertions(+), 40 deletions(-) diff --git a/HepLean/SpaceTime/LorentzAlgebra/Basic.lean b/HepLean/SpaceTime/LorentzAlgebra/Basic.lean index df13231..0e104a0 100644 --- a/HepLean/SpaceTime/LorentzAlgebra/Basic.lean +++ b/HepLean/SpaceTime/LorentzAlgebra/Basic.lean @@ -13,6 +13,12 @@ import Mathlib.Analysis.InnerProductSpace.Adjoint /-! # The Lorentz Algebra +We define + +- Define `lorentzAlgebra` via `LieAlgebra.Orthogonal.so'` as a subalgebra of + `Matrix (Fin 4) (Fin 4) ℝ`. +- In `mem_iff` prove that a matrix is in the Lorentz algebra if and only if it satisfies the + condition `Aᵀ * η = - η * A`. -/ @@ -26,61 +32,45 @@ def lorentzAlgebra : LieSubalgebra ℝ (Matrix (Fin 4) (Fin 4) ℝ) := LieSubalgebra.map (Matrix.reindexLieEquiv (@finSumFinEquiv 1 3)).toLieHom (LieAlgebra.Orthogonal.so' (Fin 1) (Fin 3) ℝ) - namespace lorentzAlgebra lemma transpose_eta (A : lorentzAlgebra) : A.1ᵀ * η = - η * A.1 := by - have h := A.2 - simp [lorentzAlgebra] at h - obtain ⟨B, hB1, hB2⟩ := h - simp [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] at hB1 + obtain ⟨B, hB1, hB2⟩ := A.2 apply (Equiv.apply_eq_iff_eq (Matrix.reindexAlgEquiv ℝ (@finSumFinEquiv 1 3).symm).toEquiv).mp - erw [Matrix.reindexAlgEquiv_mul] - simp only [Nat.reduceAdd, reindexAlgEquiv_apply, Equiv.symm_symm, AlgEquiv.toEquiv_eq_coe, - EquivLike.coe_coe, map_neg, _root_.map_mul] - rw [← Matrix.transpose_reindex] - have h1 : (reindex finSumFinEquiv.symm finSumFinEquiv.symm) A = B := - (Equiv.apply_eq_iff_eq_symm_apply (reindex finSumFinEquiv.symm finSumFinEquiv.symm)).mpr - (id hB2.symm) - rw [h1] + simp only [Nat.reduceAdd, AlgEquiv.toEquiv_eq_coe, EquivLike.coe_coe, _root_.map_mul, + reindexAlgEquiv_apply, ← transpose_reindex, map_neg] + rw [(Equiv.apply_eq_iff_eq_symm_apply (reindex finSumFinEquiv.symm finSumFinEquiv.symm)).mpr + hB2.symm] erw [η_reindex] - simpa using hB1 + simpa [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] using hB1 lemma mem_of_transpose_eta_eq_eta_mul_self {A : Matrix (Fin 4) (Fin 4) ℝ} (h : Aᵀ * η = - η * A) : A ∈ lorentzAlgebra := by - simp [lorentzAlgebra] + simp only [lorentzAlgebra, Nat.reduceAdd, LieSubalgebra.mem_map] use (Matrix.reindexLieEquiv (@finSumFinEquiv 1 3)).symm A apply And.intro - swap - change (reindexLieEquiv finSumFinEquiv) _ = _ - simp only [Nat.reduceAdd, reindexLieEquiv_symm, reindexLieEquiv_apply, reindex_apply, + · have h1 := (Equiv.apply_eq_iff_eq + (Matrix.reindexAlgEquiv ℝ (@finSumFinEquiv 1 3).symm).toEquiv).mpr h + erw [Matrix.reindexAlgEquiv_mul] at h1 + simp only [Nat.reduceAdd, reindexAlgEquiv_apply, Equiv.symm_symm, AlgEquiv.toEquiv_eq_coe, + EquivLike.coe_coe, map_neg, _root_.map_mul] at h1 + erw [η_reindex] at h1 + simpa [Nat.reduceAdd, reindexLieEquiv_symm, reindexLieEquiv_apply, + LieAlgebra.Orthogonal.so', mem_skewAdjointMatricesLieSubalgebra, + mem_skewAdjointMatricesSubmodule, IsSkewAdjoint, IsAdjointPair, mul_neg] using h1 + · change (reindexLieEquiv finSumFinEquiv) _ = _ + simp only [Nat.reduceAdd, reindexLieEquiv_symm, reindexLieEquiv_apply, reindex_apply, Equiv.symm_symm, submatrix_submatrix, Equiv.self_comp_symm, submatrix_id_id] - simp only [Nat.reduceAdd, reindexLieEquiv_symm, reindexLieEquiv_apply, - LieAlgebra.Orthogonal.so', mem_skewAdjointMatricesLieSubalgebra, - mem_skewAdjointMatricesSubmodule, IsSkewAdjoint, IsAdjointPair, mul_neg] - have h1 := (Equiv.apply_eq_iff_eq - (Matrix.reindexAlgEquiv ℝ (@finSumFinEquiv 1 3).symm).toEquiv).mpr h - erw [Matrix.reindexAlgEquiv_mul] at h1 - simp only [Nat.reduceAdd, reindexAlgEquiv_apply, Equiv.symm_symm, AlgEquiv.toEquiv_eq_coe, - EquivLike.coe_coe, map_neg, _root_.map_mul] at h1 - erw [η_reindex] at h1 - simpa using h1 -lemma mem_iff {A : Matrix (Fin 4) (Fin 4) ℝ} : A ∈ lorentzAlgebra ↔ - Aᵀ * η = - η * A := by - apply Iff.intro - · intro h - exact transpose_eta ⟨A, h⟩ - · intro h - exact mem_of_transpose_eta_eq_eta_mul_self h +lemma mem_iff {A : Matrix (Fin 4) (Fin 4) ℝ} : A ∈ lorentzAlgebra ↔ Aᵀ * η = - η * A := + Iff.intro (fun h => transpose_eta ⟨A, h⟩) (fun h => mem_of_transpose_eta_eq_eta_mul_self h) lemma mem_iff' (A : Matrix (Fin 4) (Fin 4) ℝ) : A ∈ lorentzAlgebra ↔ A = - η * Aᵀ * η := by apply Iff.intro intro h - rw [mul_assoc, mem_iff.mp h] - simp only [neg_mul, mul_neg, ← mul_assoc, η_sq, one_mul, neg_neg] + simp_rw [mul_assoc, mem_iff.mp h, neg_mul, mul_neg, ← mul_assoc, η_sq, one_mul, neg_neg] intro h rw [mem_iff] nth_rewrite 2 [h] @@ -109,7 +99,4 @@ instance spaceTimeAsLieModule : LieModule ℝ lorentzAlgebra spaceTime where rw [mulVec_smul] - - - end spaceTime