From dc5b63c4a758fee67372e8324db8aba25be1c8ac Mon Sep 17 00:00:00 2001 From: jstoobysmith <72603918+jstoobysmith@users.noreply.github.com> Date: Mon, 10 Feb 2025 10:51:44 +0000 Subject: [PATCH] refactor: Spelling and typos --- HepLean/AnomalyCancellation/SM/Permutations.lean | 4 ++-- HepLean/BeyondTheStandardModel/GeorgiGlashow/Basic.lean | 2 +- HepLean/BeyondTheStandardModel/PatiSalam/Basic.lean | 2 +- HepLean/Lorentz/ComplexTensor/PauliMatrices/Basis.lean | 2 +- HepLean/Lorentz/Group/Boosts.lean | 2 +- HepLean/Lorentz/Group/Orthochronous.lean | 2 +- HepLean/Lorentz/MinkowskiMatrix.lean | 2 +- HepLean/Lorentz/PauliMatrices/SelfAdjoint.lean | 8 ++++---- HepLean/Mathematics/List/InsertionSort.lean | 2 +- HepLean/Meta/Remark/Properties.lean | 2 +- HepLean/PerturbationTheory/CreateAnnihilate.lean | 2 +- HepLean/PerturbationTheory/FeynmanDiagrams/Momentum.lean | 8 ++++---- HepLean/PerturbationTheory/FieldOpAlgebra/Basic.lean | 4 ++-- .../FieldOpAlgebra/NormalOrder/Lemmas.lean | 2 +- HepLean/PerturbationTheory/FieldOpAlgebra/WickTerm.lean | 2 +- .../FieldOpAlgebra/WicksTheoremNormal.lean | 2 +- HepLean/PerturbationTheory/FieldSpecification/Basic.lean | 2 +- .../FieldSpecification/CrAnFieldOp.lean | 4 ++-- .../FieldSpecification/CrAnSection.lean | 2 +- .../PerturbationTheory/FieldSpecification/TimeOrder.lean | 6 +++--- HepLean/PerturbationTheory/FieldStatistics/Basic.lean | 2 +- .../PerturbationTheory/WickContraction/Sign/Basic.lean | 2 +- HepLean/PerturbationTheory/WickContraction/TimeCond.lean | 2 +- HepLean/StandardModel/HiggsBoson/GaugeAction.lean | 4 ++-- HepLean/Tensors/Tree/Elab.lean | 2 +- 25 files changed, 37 insertions(+), 37 deletions(-) diff --git a/HepLean/AnomalyCancellation/SM/Permutations.lean b/HepLean/AnomalyCancellation/SM/Permutations.lean index b49700c..c712c80 100644 --- a/HepLean/AnomalyCancellation/SM/Permutations.lean +++ b/HepLean/AnomalyCancellation/SM/Permutations.lean @@ -63,7 +63,7 @@ def repCharges {n : ℕ} : Representation ℚ (PermGroup n) (SMCharges n).Charge erw [toSMSpecies_toSpecies_inv] rfl -/-- The species chages of a set of charges acted on by a family permutation is the permutation +/-- The species charges of a set of charges acted on by a family permutation is the permutation of those species charges with the corresponding part of the family permutation. -/ lemma repCharges_toSpecies (f : PermGroup n) (S : (SMCharges n).Charges) (j : Fin 5) : toSpecies j (repCharges f S) = toSpecies j S ∘ f⁻¹ j := by @@ -78,7 +78,7 @@ lemma toSpecies_sum_invariant (m : ℕ) (f : PermGroup n) (S : (SMCharges n).Cha exact Fintype.sum_equiv (f⁻¹ j) (fun x => ((fun a => a ^ m) ∘ (toSpecies j) S ∘ ⇑(f⁻¹ j)) x) (fun x => ((fun a => a ^ m) ∘ (toSpecies j) S) x) (congrFun rfl) -/-- The gravitional anomaly equations is invariant under family permutations. -/ +/-- The gravitational anomaly equations is invariant under family permutations. -/ lemma accGrav_invariant (f : PermGroup n) (S : (SMCharges n).Charges) : accGrav (repCharges f S) = accGrav S := accGrav_ext (by simpa using toSpecies_sum_invariant 1 f S) diff --git a/HepLean/BeyondTheStandardModel/GeorgiGlashow/Basic.lean b/HepLean/BeyondTheStandardModel/GeorgiGlashow/Basic.lean index 695ce7b..eb19e0f 100644 --- a/HepLean/BeyondTheStandardModel/GeorgiGlashow/Basic.lean +++ b/HepLean/BeyondTheStandardModel/GeorgiGlashow/Basic.lean @@ -38,7 +38,7 @@ informal_lemma inclSM_ker where deps := [``inclSM, ``StandardModel.gaugeGroupℤ₆SubGroup] /-- The group embedding from `StandardModel.GaugeGroupℤ₆` to `GaugeGroupI` induced by `inclSM` by -quotienting by the kernal `inclSM_ker`. +quotienting by the kernel `inclSM_ker`. -/ informal_definition embedSMℤ₆ where deps := [``inclSM, ``StandardModel.GaugeGroupℤ₆, ``GaugeGroupI, ``inclSM_ker] diff --git a/HepLean/BeyondTheStandardModel/PatiSalam/Basic.lean b/HepLean/BeyondTheStandardModel/PatiSalam/Basic.lean index 6cb7c9e..34f59e5 100644 --- a/HepLean/BeyondTheStandardModel/PatiSalam/Basic.lean +++ b/HepLean/BeyondTheStandardModel/PatiSalam/Basic.lean @@ -43,7 +43,7 @@ informal_lemma inclSM_ker where deps := [``inclSM, ``StandardModel.gaugeGroupℤ₃SubGroup] /-- The group embedding from `StandardModel.GaugeGroupℤ₃` to `GaugeGroupI` induced by `inclSM` by -quotienting by the kernal `inclSM_ker`. +quotienting by the kernel `inclSM_ker`. -/ informal_definition embedSMℤ₃ where deps := [``inclSM, ``StandardModel.GaugeGroupℤ₃, ``GaugeGroupI, ``inclSM_ker] diff --git a/HepLean/Lorentz/ComplexTensor/PauliMatrices/Basis.lean b/HepLean/Lorentz/ComplexTensor/PauliMatrices/Basis.lean index 84a73ed..47e1c38 100644 --- a/HepLean/Lorentz/ComplexTensor/PauliMatrices/Basis.lean +++ b/HepLean/Lorentz/ComplexTensor/PauliMatrices/Basis.lean @@ -216,7 +216,7 @@ lemma basis_contr_pauliMatrix_basis_tree_expand' {n : ℕ} {c : Fin n → comple rfl /-- The map to color which appears when contracting a basis vector with - puali matrices. -/ + Pauli matrices. -/ def pauliMatrixBasisProdMap {n : ℕ} {c : Fin n → complexLorentzTensor.C} (b : Π k, Fin (complexLorentzTensor.repDim (c k))) (i1 i2 i3 : Fin 4) : diff --git a/HepLean/Lorentz/Group/Boosts.lean b/HepLean/Lorentz/Group/Boosts.lean index 2e48e7d..a5ba0c5 100644 --- a/HepLean/Lorentz/Group/Boosts.lean +++ b/HepLean/Lorentz/Group/Boosts.lean @@ -43,7 +43,7 @@ def genBoostAux₁ (u v : FuturePointing d) : ContrMod d →ₗ[ℝ] ContrMod d smul_tmul, tmul_smul, map_smul, smul_eq_mul, RingHom.id_apply] rw [← mul_assoc, mul_comm 2 c, mul_assoc, mul_smul] -/-- An auxiliary linear map used in the definition of a genearlised boost. -/ +/-- An auxiliary linear map used in the definition of a generalised boost. -/ def genBoostAux₂ (u v : FuturePointing d) : ContrMod d →ₗ[ℝ] ContrMod d where toFun x := - (⟪x, u.1.1 + v.1.1⟫ₘ / (1 + ⟪u.1.1, v.1.1⟫ₘ)) • (u.1.1 + v.1.1) map_add' x y := by diff --git a/HepLean/Lorentz/Group/Orthochronous.lean b/HepLean/Lorentz/Group/Orthochronous.lean index 82dcf50..528a123 100644 --- a/HepLean/Lorentz/Group/Orthochronous.lean +++ b/HepLean/Lorentz/Group/Orthochronous.lean @@ -113,7 +113,7 @@ lemma orthchroMapReal_minus_one_or_one (Λ : LorentzGroup d) : local notation "ℤ₂" => Multiplicative (ZMod 2) -/-- A continuous map from `lorentzGroup` to `ℤ₂` whose kernal are the Orthochronous elements. -/ +/-- A continuous map from `lorentzGroup` to `ℤ₂` whose kernel are the Orthochronous elements. -/ def orthchroMap : C(LorentzGroup d, ℤ₂) := ContinuousMap.comp coeForℤ₂ { toFun := fun Λ => ⟨orthchroMapReal Λ, orthchroMapReal_minus_one_or_one Λ⟩, diff --git a/HepLean/Lorentz/MinkowskiMatrix.lean b/HepLean/Lorentz/MinkowskiMatrix.lean index 9d5741b..24fea36 100644 --- a/HepLean/Lorentz/MinkowskiMatrix.lean +++ b/HepLean/Lorentz/MinkowskiMatrix.lean @@ -163,7 +163,7 @@ lemma dual_apply (μ ν : Fin 1 ⊕ Fin d) : diagonal_mul, transpose_apply, diagonal_apply_eq] /-- The components of the Minkowski dual of a matrix multiplied by the Minkowski matrix - in tems of the original matrix. -/ + in terms of the original matrix. -/ lemma dual_apply_minkowskiMatrix (μ ν : Fin 1 ⊕ Fin d) : dual Λ μ ν * η ν ν = η μ μ * Λ ν μ := by rw [dual_apply, mul_assoc] diff --git a/HepLean/Lorentz/PauliMatrices/SelfAdjoint.lean b/HepLean/Lorentz/PauliMatrices/SelfAdjoint.lean index 8bb7651..2028b8c 100644 --- a/HepLean/Lorentz/PauliMatrices/SelfAdjoint.lean +++ b/HepLean/Lorentz/PauliMatrices/SelfAdjoint.lean @@ -338,7 +338,7 @@ lemma σSAL_decomp (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : ring /-- The component of a self-adjoint matrix in the direction `σ0` under - the basis formed by the covaraiant Pauli matrices. -/ + the basis formed by the covariant Pauli matrices. -/ @[simp] lemma σSAL_repr_inl_0 (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : σSAL.repr M (Sum.inl 0) = 1 / 2 * Matrix.trace (σ0 * M.1) := by @@ -355,7 +355,7 @@ lemma σSAL_repr_inl_0 (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : simp [σSAL] /-- The component of a self-adjoint matrix in the direction `-σ1` under - the basis formed by the covaraiant Pauli matrices. -/ + the basis formed by the covariant Pauli matrices. -/ @[simp] lemma σSAL_repr_inr_0 (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : σSAL.repr M (Sum.inr 0) = - 1 / 2 * Matrix.trace (σ1 * M.1) := by @@ -372,7 +372,7 @@ lemma σSAL_repr_inr_0 (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : simp [σSAL] /-- The component of a self-adjoint matrix in the direction `-σ2` under - the basis formed by the covaraiant Pauli matrices. -/ + the basis formed by the covariant Pauli matrices. -/ @[simp] lemma σSAL_repr_inr_1 (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : σSAL.repr M (Sum.inr 1) = - 1 / 2 * Matrix.trace (σ2 * M.1) := by @@ -389,7 +389,7 @@ lemma σSAL_repr_inr_1 (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : simp [σSAL] /-- The component of a self-adjoint matrix in the direction `-σ3` under - the basis formed by the covaraiant Pauli matrices. -/ + the basis formed by the covariant Pauli matrices. -/ @[simp] lemma σSAL_repr_inr_2 (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : σSAL.repr M (Sum.inr 2) = - 1 / 2 * Matrix.trace (σ3 * M.1) := by diff --git a/HepLean/Mathematics/List/InsertionSort.lean b/HepLean/Mathematics/List/InsertionSort.lean index 9957650..17f5cca 100644 --- a/HepLean/Mathematics/List/InsertionSort.lean +++ b/HepLean/Mathematics/List/InsertionSort.lean @@ -23,7 +23,7 @@ lemma insertionSortMin_lt_length_succ {α : Type} (r : α → α → Prop) [Deci rw [eraseIdx_length'] simp -/-- Given a list `i :: l` the left-most minimial position `a` of `i :: l` wrt `r` +/-- Given a list `i :: l` the left-most minimal position `a` of `i :: l` wrt `r` as an element of `Fin (insertionSortDropMinPos r i l).length.succ`. -/ def insertionSortMinPosFin {α : Type} (r : α → α → Prop) [DecidableRel r] (i : α) (l : List α) : Fin (insertionSortDropMinPos r i l).length.succ := diff --git a/HepLean/Meta/Remark/Properties.lean b/HepLean/Meta/Remark/Properties.lean index 820843a..ba03f21 100644 --- a/HepLean/Meta/Remark/Properties.lean +++ b/HepLean/Meta/Remark/Properties.lean @@ -25,7 +25,7 @@ def RemarkInfo.toFullName (r : RemarkInfo) : Name := else r.name -/-- A Bool which is true if a name correponds to a remark. -/ +/-- A Bool which is true if a name corresponds to a remark. -/ def RemarkInfo.IsRemark (n : Name) : m Bool := do let allRemarks ← allRemarkInfo let r := allRemarks.find? fun r => r.toFullName == n diff --git a/HepLean/PerturbationTheory/CreateAnnihilate.lean b/HepLean/PerturbationTheory/CreateAnnihilate.lean index 895fefa..cc397b1 100644 --- a/HepLean/PerturbationTheory/CreateAnnihilate.lean +++ b/HepLean/PerturbationTheory/CreateAnnihilate.lean @@ -12,7 +12,7 @@ import Mathlib.Algebra.BigOperators.Group.Finset /-- The type `CreateAnnihilate` is the type containing two elements `create` and `annihilate`. This type is used to specify if an operator is a creation, or annihilation, operator - or the sum thereof or intergral thereover etc. -/ + or the sum thereof or integral thereover etc. -/ inductive CreateAnnihilate where | create : CreateAnnihilate | annihilate : CreateAnnihilate diff --git a/HepLean/PerturbationTheory/FeynmanDiagrams/Momentum.lean b/HepLean/PerturbationTheory/FeynmanDiagrams/Momentum.lean index 794e7a3..012b617 100644 --- a/HepLean/PerturbationTheory/FeynmanDiagrams/Momentum.lean +++ b/HepLean/PerturbationTheory/FeynmanDiagrams/Momentum.lean @@ -83,17 +83,17 @@ def euclidInner : F.HalfEdgeMomenta →ₗ[ℝ] F.HalfEdgeMomenta →ₗ[ℝ] Corresponding to that spanned by its total outflowing momentum. -/ def EdgeMomenta : Type := F.𝓔 → ℝ -/-- The edge momenta form an additive commuative group. -/ +/-- The edge momenta form an additive commutative group. -/ instance : AddCommGroup F.EdgeMomenta := Pi.addCommGroup /-- The edge momenta form a module over `ℝ`. -/ instance : Module ℝ F.EdgeMomenta := Pi.module _ _ _ -/-- The type which associates to each ege a `1`-dimensional vector space. +/-- The type which associates to each edge a `1`-dimensional vector space. Corresponding to that spanned by its total inflowing momentum. -/ def VertexMomenta : Type := F.𝓥 → ℝ -/-- The vertex momenta carries the structure of an additive commuative group. -/ +/-- The vertex momenta carries the structure of an additive commutative group. -/ instance : AddCommGroup F.VertexMomenta := Pi.addCommGroup /-- The vertex momenta carries the structure of a module over `ℝ`. -/ @@ -106,7 +106,7 @@ def EdgeVertexMomentaMap : Fin 2 → Type := fun i => | 1 => F.VertexMomenta /-- The target of the map `EdgeVertexMomentaMap` is either the type of edge momenta - or vertex momenta and thus carries the structure of an additive commuative group. -/ + or vertex momenta and thus carries the structure of an additive commutative group. -/ instance (i : Fin 2) : AddCommGroup (EdgeVertexMomentaMap F i) := match i with | 0 => instAddCommGroupEdgeMomenta F diff --git a/HepLean/PerturbationTheory/FieldOpAlgebra/Basic.lean b/HepLean/PerturbationTheory/FieldOpAlgebra/Basic.lean index 77f0554..a4bd1ef 100644 --- a/HepLean/PerturbationTheory/FieldOpAlgebra/Basic.lean +++ b/HepLean/PerturbationTheory/FieldOpAlgebra/Basic.lean @@ -40,7 +40,7 @@ def fieldOpIdealSet : Set (FieldOpFreeAlgebra 𝓕) := This corresponds to the condition that two annihilation operators always super-commute. - `[ofCrAnOpF φ, ofCrAnOpF φ']ₛca` for `φ` and `φ'` operators with different statistics. This corresponds to the condition that two operators with different statistics always - super-commute. In otherwords, fermions and bosons always super-commute. + super-commute. In other words, fermions and bosons always super-commute. - `[ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca`. This corresponds to the condition, when combined with the conditions above, that the super-commutor is in the center of the of the algebra. @@ -218,7 +218,7 @@ lemma ι_superCommuteF_ofCrAnOpF_ofCrAnOpF_mem_center (φ ψ : 𝓕.CrAnFieldOp) /-! -## The kernal of ι +## The kernel of ι -/ lemma ι_eq_zero_iff_mem_ideal (x : FieldOpFreeAlgebra 𝓕) : diff --git a/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Lemmas.lean b/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Lemmas.lean index f1da540..97ac79d 100644 --- a/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Lemmas.lean +++ b/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Lemmas.lean @@ -282,7 +282,7 @@ lemma ofCrAnOp_superCommute_normalOrder_ofFieldOpList_sum (φ : 𝓕.CrAnFieldOp /-- The commutor of the annihilation part of a field operator with a normal ordered list of field -operators can be decomponsed into the sum of the commutators of the annihilation part with each +operators can be decomposed into the sum of the commutators of the annihilation part with each element of the list of field operators, i.e. `[anPart φ, 𝓝(φ₀…φₙ)]ₛ= ∑ i, 𝓢(φ, φ₀…φᵢ₋₁) • [anPart φ, φᵢ]ₛ * 𝓝(φ₀…φᵢ₋₁φᵢ₊₁…φₙ)`. -/ diff --git a/HepLean/PerturbationTheory/FieldOpAlgebra/WickTerm.lean b/HepLean/PerturbationTheory/FieldOpAlgebra/WickTerm.lean index cc3af9d..200f7d9 100644 --- a/HepLean/PerturbationTheory/FieldOpAlgebra/WickTerm.lean +++ b/HepLean/PerturbationTheory/FieldOpAlgebra/WickTerm.lean @@ -104,7 +104,7 @@ is equal the product of - `φsΛ.timeContract` - `s • [anPart φ, ofFieldOp φs[k]]ₛ` where `s` is the sign associated with moving `φ` through uncontracted fields in `φ₀…φₖ₋₁` -- the normal ordering `[φsΛ]ᵘᶜ` with the field corresonding to `k` removed. +- the normal ordering `[φsΛ]ᵘᶜ` with the field corresponding to `k` removed. The proof of this result relies on - `timeContract_insert_some_of_not_lt` diff --git a/HepLean/PerturbationTheory/FieldOpAlgebra/WicksTheoremNormal.lean b/HepLean/PerturbationTheory/FieldOpAlgebra/WicksTheoremNormal.lean index 679abaf..b2132b7 100644 --- a/HepLean/PerturbationTheory/FieldOpAlgebra/WicksTheoremNormal.lean +++ b/HepLean/PerturbationTheory/FieldOpAlgebra/WicksTheoremNormal.lean @@ -34,7 +34,7 @@ This result follows from those `𝓣(φsΛ.staticWickTerm)` for which `φsΛ` has a contracted pair which are not equal time to zero. - `staticContract_eq_timeContract_of_eqTimeOnly` to rewrite the static contract - in the reminaing `𝓣(φsΛ.staticWickTerm)` as a time contract. + in the remaining `𝓣(φsΛ.staticWickTerm)` as a time contract. - `timeOrder_timeContract_mul_of_eqTimeOnly_left` to move the time contracts out of the time ordering. -/ diff --git a/HepLean/PerturbationTheory/FieldSpecification/Basic.lean b/HepLean/PerturbationTheory/FieldSpecification/Basic.lean index bd4e315..cf59085 100644 --- a/HepLean/PerturbationTheory/FieldSpecification/Basic.lean +++ b/HepLean/PerturbationTheory/FieldSpecification/Basic.lean @@ -88,7 +88,7 @@ As some intuition, if `f` corresponds to a Weyl-fermion field, then - `position f e x`, `e` would correspond to a Lorentz index `α`, and `position f e x` would, once represented in the operator algebra, be proportional to the operator `∑ s, ∫ d^3p/(…) (x_α(p,s) a(p, s) e^{-i p x} + y_α(p,s) a^†(p, s) e^{-i p x})`. -- `outAsymp f e p`, `e` would corresond to a spin `s`, and `outAsymp f e p` would, +- `outAsymp f e p`, `e` would correspond to a spin `s`, and `outAsymp f e p` would, once represented in the operator algebra, be proportional to the annihilation operator `a^†(p, s)`. diff --git a/HepLean/PerturbationTheory/FieldSpecification/CrAnFieldOp.lean b/HepLean/PerturbationTheory/FieldSpecification/CrAnFieldOp.lean index 89aa9c0..13141fd 100644 --- a/HepLean/PerturbationTheory/FieldSpecification/CrAnFieldOp.lean +++ b/HepLean/PerturbationTheory/FieldSpecification/CrAnFieldOp.lean @@ -83,7 +83,7 @@ As some intuition, if `f` corresponds to a Weyl-fermion field, it would contribu - an element corresponding to the creation parts of position operators for each each Lorentz index `α`: `∑ s, ∫ d^3p/(…) (x_α(p,s) a(p, s) e^{-i p x})`. -- an element corresponding to anihilation parts of position operator, +- an element corresponding to annihilation parts of position operator, for each each Lorentz index `α`: `∑ s, ∫ d^3p/(…) (y_α(p,s) a^†(p, s) e^{-i p x})`. - an element corresponding to outgoing asymptotic operators for each spin `s`: `a^†(p, s)`. @@ -98,7 +98,7 @@ def crAnFieldOpToFieldOp : 𝓕.CrAnFieldOp → 𝓕.FieldOp := Sigma.fst lemma crAnFieldOpToFieldOp_prod (s : 𝓕.FieldOp) (t : 𝓕.fieldOpToCrAnType s) : 𝓕.crAnFieldOpToFieldOp ⟨s, t⟩ = s := rfl -/-- For a field specficiation `𝓕`, `𝓕.crAnFieldOpToCreateAnnihilate` is the map from +/-- For a field specification `𝓕`, `𝓕.crAnFieldOpToCreateAnnihilate` is the map from `𝓕.CrAnFieldOp` to `CreateAnnihilate` taking `φ` to `create` if - `φ` corresponds to an incoming asymptotic field operator or the creation part of a position based field operator. diff --git a/HepLean/PerturbationTheory/FieldSpecification/CrAnSection.lean b/HepLean/PerturbationTheory/FieldSpecification/CrAnSection.lean index 5b44b3c..6f355e4 100644 --- a/HepLean/PerturbationTheory/FieldSpecification/CrAnSection.lean +++ b/HepLean/PerturbationTheory/FieldSpecification/CrAnSection.lean @@ -126,7 +126,7 @@ def singletonEquiv {φ : 𝓕.FieldOp} : CrAnSection [φ] ≃ simp only [head] rfl -/-- An equivalence seperating the head of a creation and annihilation section +/-- An equivalence separating the head of a creation and annihilation section from the tail. -/ def consEquiv {φ : 𝓕.FieldOp} {φs : List 𝓕.FieldOp} : CrAnSection (φ :: φs) ≃ 𝓕.fieldOpToCrAnType φ × CrAnSection φs where diff --git a/HepLean/PerturbationTheory/FieldSpecification/TimeOrder.lean b/HepLean/PerturbationTheory/FieldSpecification/TimeOrder.lean index babe0ee..19da522 100644 --- a/HepLean/PerturbationTheory/FieldSpecification/TimeOrder.lean +++ b/HepLean/PerturbationTheory/FieldSpecification/TimeOrder.lean @@ -32,7 +32,7 @@ def timeOrderRel : 𝓕.FieldOp → 𝓕.FieldOp → Prop | FieldOp.inAsymp _, FieldOp.position _ => False | FieldOp.inAsymp _, FieldOp.inAsymp _ => True -/-- The relation `timeOrderRel` is decidable, but not computablly so due to +/-- The relation `timeOrderRel` is decidable, but not computable so due to `Real.decidableLE`. -/ noncomputable instance : (φ φ' : 𝓕.FieldOp) → Decidable (timeOrderRel φ φ') | FieldOp.outAsymp _, _ => isTrue True.intro @@ -206,7 +206,7 @@ it is needed that the operator with the greatest time is to the left. -/ def crAnTimeOrderRel (a b : 𝓕.CrAnFieldOp) : Prop := 𝓕.timeOrderRel a.1 b.1 -/-- The relation `crAnTimeOrderRel` is decidable, but not computablly so due to +/-- The relation `crAnTimeOrderRel` is decidable, but not computable so due to `Real.decidableLE`. -/ noncomputable instance (φ φ' : 𝓕.CrAnFieldOp) : Decidable (crAnTimeOrderRel φ φ') := inferInstanceAs (Decidable (𝓕.timeOrderRel φ.1 φ'.1)) @@ -508,7 +508,7 @@ lemma sum_crAnSections_timeOrder {φs : List 𝓕.FieldOp} [AddCommMonoid M] def normTimeOrderRel (a b : 𝓕.CrAnFieldOp) : Prop := crAnTimeOrderRel a b ∧ (crAnTimeOrderRel b a → normalOrderRel a b) -/-- The relation `normTimeOrderRel` is decidable, but not computablly so due to +/-- The relation `normTimeOrderRel` is decidable, but not computable so due to `Real.decidableLE`. -/ noncomputable instance (φ φ' : 𝓕.CrAnFieldOp) : Decidable (normTimeOrderRel φ φ') := instDecidableAnd diff --git a/HepLean/PerturbationTheory/FieldStatistics/Basic.lean b/HepLean/PerturbationTheory/FieldStatistics/Basic.lean index 9639ade..10333ee 100644 --- a/HepLean/PerturbationTheory/FieldStatistics/Basic.lean +++ b/HepLean/PerturbationTheory/FieldStatistics/Basic.lean @@ -26,7 +26,7 @@ namespace FieldStatistic variable {𝓕 : Type} -/-- The type `FieldStatistic` carries an instance of a commuative group in which +/-- The type `FieldStatistic` carries an instance of a commutative group in which - `bosonic * bosonic = bosonic` - `bosonic * fermionic = fermionic` - `fermionic * bosonic = fermionic` diff --git a/HepLean/PerturbationTheory/WickContraction/Sign/Basic.lean b/HepLean/PerturbationTheory/WickContraction/Sign/Basic.lean index 7638d3f..07e4657 100644 --- a/HepLean/PerturbationTheory/WickContraction/Sign/Basic.lean +++ b/HepLean/PerturbationTheory/WickContraction/Sign/Basic.lean @@ -21,7 +21,7 @@ open FieldStatistic /-- Given a Wick contraction `c : WickContraction n` and `i1 i2 : Fin n` the finite set of elements of `Fin n` between `i1` and `i2` which are either uncontracted - or are contracted but are contracted with an element occuring after `i1`. + or are contracted but are contracted with an element occurring after `i1`. I.e. the elements of `Fin n` between `i1` and `i2` which are not contracted with before `i1`. One should assume `i1 < i2` otherwise this finite set is empty. -/ def signFinset (c : WickContraction n) (i1 i2 : Fin n) : Finset (Fin n) := diff --git a/HepLean/PerturbationTheory/WickContraction/TimeCond.lean b/HepLean/PerturbationTheory/WickContraction/TimeCond.lean index cde0f93..9ac387a 100644 --- a/HepLean/PerturbationTheory/WickContraction/TimeCond.lean +++ b/HepLean/PerturbationTheory/WickContraction/TimeCond.lean @@ -506,7 +506,7 @@ lemma hasEqTimeEquiv_ext_sigma {φs : List 𝓕.FieldOp} {x1 x2 : simp only [ne_eq, congr_refl] at h2 simp [h2] -/-- The equivalence which seperates a Wick contraction which has an equal time contraction +/-- The equivalence which separates a Wick contraction which has an equal time contraction into a non-empty contraction only between equal-time fields and a Wick contraction which does not have equal time contractions. -/ def hasEqTimeEquiv (φs : List 𝓕.FieldOp) : diff --git a/HepLean/StandardModel/HiggsBoson/GaugeAction.lean b/HepLean/StandardModel/HiggsBoson/GaugeAction.lean index 0c2a714..4bcd195 100644 --- a/HepLean/StandardModel/HiggsBoson/GaugeAction.lean +++ b/HepLean/StandardModel/HiggsBoson/GaugeAction.lean @@ -43,7 +43,7 @@ noncomputable def higgsRepUnitary : GaugeGroupI →* unitaryGroup (Fin 2) ℂ wh repeat rw [mul_assoc] map_one' := by simp -/-- Using the orthonormal basis of `HiggsVec`, turns a `2×2`-matrix intoa a linear map +/-- Using the orthonormal basis of `HiggsVec`, turns a `2×2`-matrix into a linear map of `HiggsVec`. -/ noncomputable def matrixToLin : Matrix (Fin 2) (Fin 2) ℂ →* (HiggsVec →L[ℂ] HiggsVec) where toFun g := LinearMap.toContinuousLinearMap @@ -220,7 +220,7 @@ informal_lemma guage_orbit where deps := [``rotate_fst_zero_snd_real] /-- The Higgs boson breaks electroweak symmetry down to the electromagnetic force, i.e., the -stablity group of the action of `rep` on `![0, Complex.ofReal ‖φ‖]`, for non-zero `‖φ‖`, is the +stability group of the action of `rep` on `![0, Complex.ofReal ‖φ‖]`, for non-zero `‖φ‖`, is the `SU(3) × U(1)` subgroup of `gaugeGroup := SU(3) × SU(2) × U(1)` with the embedding given by `(g, e^{i θ}) ↦ (g, diag (e ^ {3 * i θ}, e ^ {- 3 * i θ}), e^{i θ})`. -/ diff --git a/HepLean/Tensors/Tree/Elab.lean b/HepLean/Tensors/Tree/Elab.lean index a93f997..d1c6130 100644 --- a/HepLean/Tensors/Tree/Elab.lean +++ b/HepLean/Tensors/Tree/Elab.lean @@ -77,7 +77,7 @@ syntax num : indexExpr /-- Notation to describe the jiggle of a tensor index. -/ syntax "τ(" ident ")" : indexExpr -/-- Bool which is ture if an index is a num. -/ +/-- Bool which is true if an index is a num. -/ def indexExprIsNum (stx : Syntax) : Bool := match stx with | `(indexExpr|$_:num) => true