refactor: Spelling and typos
This commit is contained in:
parent
b30a49d7db
commit
dc5b63c4a7
25 changed files with 37 additions and 37 deletions
|
@ -12,7 +12,7 @@ import Mathlib.Algebra.BigOperators.Group.Finset
|
|||
|
||||
/-- The type `CreateAnnihilate` is the type containing two elements `create` and `annihilate`.
|
||||
This type is used to specify if an operator is a creation, or annihilation, operator
|
||||
or the sum thereof or intergral thereover etc. -/
|
||||
or the sum thereof or integral thereover etc. -/
|
||||
inductive CreateAnnihilate where
|
||||
| create : CreateAnnihilate
|
||||
| annihilate : CreateAnnihilate
|
||||
|
|
|
@ -83,17 +83,17 @@ def euclidInner : F.HalfEdgeMomenta →ₗ[ℝ] F.HalfEdgeMomenta →ₗ[ℝ]
|
|||
Corresponding to that spanned by its total outflowing momentum. -/
|
||||
def EdgeMomenta : Type := F.𝓔 → ℝ
|
||||
|
||||
/-- The edge momenta form an additive commuative group. -/
|
||||
/-- The edge momenta form an additive commutative group. -/
|
||||
instance : AddCommGroup F.EdgeMomenta := Pi.addCommGroup
|
||||
|
||||
/-- The edge momenta form a module over `ℝ`. -/
|
||||
instance : Module ℝ F.EdgeMomenta := Pi.module _ _ _
|
||||
|
||||
/-- The type which associates to each ege a `1`-dimensional vector space.
|
||||
/-- The type which associates to each edge a `1`-dimensional vector space.
|
||||
Corresponding to that spanned by its total inflowing momentum. -/
|
||||
def VertexMomenta : Type := F.𝓥 → ℝ
|
||||
|
||||
/-- The vertex momenta carries the structure of an additive commuative group. -/
|
||||
/-- The vertex momenta carries the structure of an additive commutative group. -/
|
||||
instance : AddCommGroup F.VertexMomenta := Pi.addCommGroup
|
||||
|
||||
/-- The vertex momenta carries the structure of a module over `ℝ`. -/
|
||||
|
@ -106,7 +106,7 @@ def EdgeVertexMomentaMap : Fin 2 → Type := fun i =>
|
|||
| 1 => F.VertexMomenta
|
||||
|
||||
/-- The target of the map `EdgeVertexMomentaMap` is either the type of edge momenta
|
||||
or vertex momenta and thus carries the structure of an additive commuative group. -/
|
||||
or vertex momenta and thus carries the structure of an additive commutative group. -/
|
||||
instance (i : Fin 2) : AddCommGroup (EdgeVertexMomentaMap F i) :=
|
||||
match i with
|
||||
| 0 => instAddCommGroupEdgeMomenta F
|
||||
|
|
|
@ -40,7 +40,7 @@ def fieldOpIdealSet : Set (FieldOpFreeAlgebra 𝓕) :=
|
|||
This corresponds to the condition that two annihilation operators always super-commute.
|
||||
- `[ofCrAnOpF φ, ofCrAnOpF φ']ₛca` for `φ` and `φ'` operators with different statistics.
|
||||
This corresponds to the condition that two operators with different statistics always
|
||||
super-commute. In otherwords, fermions and bosons always super-commute.
|
||||
super-commute. In other words, fermions and bosons always super-commute.
|
||||
- `[ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca`. This corresponds to the condition,
|
||||
when combined with the conditions above, that the super-commutor is in the center of the
|
||||
of the algebra.
|
||||
|
@ -218,7 +218,7 @@ lemma ι_superCommuteF_ofCrAnOpF_ofCrAnOpF_mem_center (φ ψ : 𝓕.CrAnFieldOp)
|
|||
|
||||
/-!
|
||||
|
||||
## The kernal of ι
|
||||
## The kernel of ι
|
||||
-/
|
||||
|
||||
lemma ι_eq_zero_iff_mem_ideal (x : FieldOpFreeAlgebra 𝓕) :
|
||||
|
|
|
@ -282,7 +282,7 @@ lemma ofCrAnOp_superCommute_normalOrder_ofFieldOpList_sum (φ : 𝓕.CrAnFieldOp
|
|||
|
||||
/--
|
||||
The commutor of the annihilation part of a field operator with a normal ordered list of field
|
||||
operators can be decomponsed into the sum of the commutators of the annihilation part with each
|
||||
operators can be decomposed into the sum of the commutators of the annihilation part with each
|
||||
element of the list of field operators, i.e.
|
||||
`[anPart φ, 𝓝(φ₀…φₙ)]ₛ= ∑ i, 𝓢(φ, φ₀…φᵢ₋₁) • [anPart φ, φᵢ]ₛ * 𝓝(φ₀…φᵢ₋₁φᵢ₊₁…φₙ)`.
|
||||
-/
|
||||
|
|
|
@ -104,7 +104,7 @@ is equal the product of
|
|||
- `φsΛ.timeContract`
|
||||
- `s • [anPart φ, ofFieldOp φs[k]]ₛ` where `s` is the sign associated with moving `φ` through
|
||||
uncontracted fields in `φ₀…φₖ₋₁`
|
||||
- the normal ordering `[φsΛ]ᵘᶜ` with the field corresonding to `k` removed.
|
||||
- the normal ordering `[φsΛ]ᵘᶜ` with the field corresponding to `k` removed.
|
||||
|
||||
The proof of this result relies on
|
||||
- `timeContract_insert_some_of_not_lt`
|
||||
|
|
|
@ -34,7 +34,7 @@ This result follows from
|
|||
those `𝓣(φsΛ.staticWickTerm)` for which `φsΛ` has a contracted pair which are not
|
||||
equal time to zero.
|
||||
- `staticContract_eq_timeContract_of_eqTimeOnly` to rewrite the static contract
|
||||
in the reminaing `𝓣(φsΛ.staticWickTerm)` as a time contract.
|
||||
in the remaining `𝓣(φsΛ.staticWickTerm)` as a time contract.
|
||||
- `timeOrder_timeContract_mul_of_eqTimeOnly_left` to move the time contracts out of the time
|
||||
ordering.
|
||||
-/
|
||||
|
|
|
@ -88,7 +88,7 @@ As some intuition, if `f` corresponds to a Weyl-fermion field, then
|
|||
- `position f e x`, `e` would correspond to a Lorentz index `α`, and `position f e x` would,
|
||||
once represented in the operator algebra, be proportional to the operator
|
||||
`∑ s, ∫ d^3p/(…) (x_α(p,s) a(p, s) e^{-i p x} + y_α(p,s) a^†(p, s) e^{-i p x})`.
|
||||
- `outAsymp f e p`, `e` would corresond to a spin `s`, and `outAsymp f e p` would,
|
||||
- `outAsymp f e p`, `e` would correspond to a spin `s`, and `outAsymp f e p` would,
|
||||
once represented in the operator algebra, be proportional to the
|
||||
annihilation operator `a^†(p, s)`.
|
||||
|
||||
|
|
|
@ -83,7 +83,7 @@ As some intuition, if `f` corresponds to a Weyl-fermion field, it would contribu
|
|||
- an element corresponding to the creation parts of position operators for each each Lorentz
|
||||
index `α`:
|
||||
`∑ s, ∫ d^3p/(…) (x_α(p,s) a(p, s) e^{-i p x})`.
|
||||
- an element corresponding to anihilation parts of position operator,
|
||||
- an element corresponding to annihilation parts of position operator,
|
||||
for each each Lorentz index `α`:
|
||||
`∑ s, ∫ d^3p/(…) (y_α(p,s) a^†(p, s) e^{-i p x})`.
|
||||
- an element corresponding to outgoing asymptotic operators for each spin `s`: `a^†(p, s)`.
|
||||
|
@ -98,7 +98,7 @@ def crAnFieldOpToFieldOp : 𝓕.CrAnFieldOp → 𝓕.FieldOp := Sigma.fst
|
|||
lemma crAnFieldOpToFieldOp_prod (s : 𝓕.FieldOp) (t : 𝓕.fieldOpToCrAnType s) :
|
||||
𝓕.crAnFieldOpToFieldOp ⟨s, t⟩ = s := rfl
|
||||
|
||||
/-- For a field specficiation `𝓕`, `𝓕.crAnFieldOpToCreateAnnihilate` is the map from
|
||||
/-- For a field specification `𝓕`, `𝓕.crAnFieldOpToCreateAnnihilate` is the map from
|
||||
`𝓕.CrAnFieldOp` to `CreateAnnihilate` taking `φ` to `create` if
|
||||
- `φ` corresponds to an incoming asymptotic field operator or the creation part of a position based
|
||||
field operator.
|
||||
|
|
|
@ -126,7 +126,7 @@ def singletonEquiv {φ : 𝓕.FieldOp} : CrAnSection [φ] ≃
|
|||
simp only [head]
|
||||
rfl
|
||||
|
||||
/-- An equivalence seperating the head of a creation and annihilation section
|
||||
/-- An equivalence separating the head of a creation and annihilation section
|
||||
from the tail. -/
|
||||
def consEquiv {φ : 𝓕.FieldOp} {φs : List 𝓕.FieldOp} : CrAnSection (φ :: φs) ≃
|
||||
𝓕.fieldOpToCrAnType φ × CrAnSection φs where
|
||||
|
|
|
@ -32,7 +32,7 @@ def timeOrderRel : 𝓕.FieldOp → 𝓕.FieldOp → Prop
|
|||
| FieldOp.inAsymp _, FieldOp.position _ => False
|
||||
| FieldOp.inAsymp _, FieldOp.inAsymp _ => True
|
||||
|
||||
/-- The relation `timeOrderRel` is decidable, but not computablly so due to
|
||||
/-- The relation `timeOrderRel` is decidable, but not computable so due to
|
||||
`Real.decidableLE`. -/
|
||||
noncomputable instance : (φ φ' : 𝓕.FieldOp) → Decidable (timeOrderRel φ φ')
|
||||
| FieldOp.outAsymp _, _ => isTrue True.intro
|
||||
|
@ -206,7 +206,7 @@ it is needed that the operator with the greatest time is to the left.
|
|||
-/
|
||||
def crAnTimeOrderRel (a b : 𝓕.CrAnFieldOp) : Prop := 𝓕.timeOrderRel a.1 b.1
|
||||
|
||||
/-- The relation `crAnTimeOrderRel` is decidable, but not computablly so due to
|
||||
/-- The relation `crAnTimeOrderRel` is decidable, but not computable so due to
|
||||
`Real.decidableLE`. -/
|
||||
noncomputable instance (φ φ' : 𝓕.CrAnFieldOp) : Decidable (crAnTimeOrderRel φ φ') :=
|
||||
inferInstanceAs (Decidable (𝓕.timeOrderRel φ.1 φ'.1))
|
||||
|
@ -508,7 +508,7 @@ lemma sum_crAnSections_timeOrder {φs : List 𝓕.FieldOp} [AddCommMonoid M]
|
|||
def normTimeOrderRel (a b : 𝓕.CrAnFieldOp) : Prop :=
|
||||
crAnTimeOrderRel a b ∧ (crAnTimeOrderRel b a → normalOrderRel a b)
|
||||
|
||||
/-- The relation `normTimeOrderRel` is decidable, but not computablly so due to
|
||||
/-- The relation `normTimeOrderRel` is decidable, but not computable so due to
|
||||
`Real.decidableLE`. -/
|
||||
noncomputable instance (φ φ' : 𝓕.CrAnFieldOp) : Decidable (normTimeOrderRel φ φ') :=
|
||||
instDecidableAnd
|
||||
|
|
|
@ -26,7 +26,7 @@ namespace FieldStatistic
|
|||
|
||||
variable {𝓕 : Type}
|
||||
|
||||
/-- The type `FieldStatistic` carries an instance of a commuative group in which
|
||||
/-- The type `FieldStatistic` carries an instance of a commutative group in which
|
||||
- `bosonic * bosonic = bosonic`
|
||||
- `bosonic * fermionic = fermionic`
|
||||
- `fermionic * bosonic = fermionic`
|
||||
|
|
|
@ -21,7 +21,7 @@ open FieldStatistic
|
|||
|
||||
/-- Given a Wick contraction `c : WickContraction n` and `i1 i2 : Fin n` the finite set
|
||||
of elements of `Fin n` between `i1` and `i2` which are either uncontracted
|
||||
or are contracted but are contracted with an element occuring after `i1`.
|
||||
or are contracted but are contracted with an element occurring after `i1`.
|
||||
I.e. the elements of `Fin n` between `i1` and `i2` which are not contracted with before `i1`.
|
||||
One should assume `i1 < i2` otherwise this finite set is empty. -/
|
||||
def signFinset (c : WickContraction n) (i1 i2 : Fin n) : Finset (Fin n) :=
|
||||
|
|
|
@ -506,7 +506,7 @@ lemma hasEqTimeEquiv_ext_sigma {φs : List 𝓕.FieldOp} {x1 x2 :
|
|||
simp only [ne_eq, congr_refl] at h2
|
||||
simp [h2]
|
||||
|
||||
/-- The equivalence which seperates a Wick contraction which has an equal time contraction
|
||||
/-- The equivalence which separates a Wick contraction which has an equal time contraction
|
||||
into a non-empty contraction only between equal-time fields and a Wick contraction which
|
||||
does not have equal time contractions. -/
|
||||
def hasEqTimeEquiv (φs : List 𝓕.FieldOp) :
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue