refactor: Remove super algebra file

This commit is contained in:
jstoobysmith 2024-12-22 09:55:56 +00:00
parent 2e5b66655e
commit dcfc4b1318
4 changed files with 3 additions and 38 deletions

View file

@ -1,31 +0,0 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import Mathlib.RingTheory.GradedAlgebra.Basic
import HepLean.Meta.Informal.Basic
/-!
# Super Algebras
A super algebra is a special type of graded algebra.
It is used in physics to model the commutator of fermionic operators among themselves,
aswell as among bosonic operators.
-/
informal_definition SuperAlgebra where
math :≈ "A super algebra is a graded algebra A with a ℤ₂ grading."
physics :≈ "A super algebra is used to model the commutator of fermionic operators among
themselves, aswell as among bosonic operators."
ref :≈ "https://en.wikipedia.org/wiki/Superalgebra"
namespace SuperAlgebra
informal_definition superCommuator where
math :≈ "The commutator which for `a ∈ Aᵢ` and `b ∈ Aⱼ` is defined as `ab - (-1)^(i * j) ba`."
deps :≈ [``SuperAlgebra]
end SuperAlgebra

View file

@ -31,8 +31,7 @@ def permProdLeft := (equivToIso finSumFinEquiv).inv ≫ σ ▷ OverColor.mk c2
@[simp]
lemma permProdLeft_toEquiv : Hom.toEquiv (permProdLeft c2 σ) = finSumFinEquiv.symm.trans
(((Hom.toEquiv σ).sumCongr (Equiv.refl (Fin n2))).trans finSumFinEquiv) := by
simp [permProdLeft]
(((Hom.toEquiv σ).sumCongr (Equiv.refl (Fin n2))).trans finSumFinEquiv) := rfl
/-- The permutation that arises when moving a `perm` node in the right entry through a `prod` node.
This permutation is defined using left-whiskering and composition with `finSumFinEquiv`
@ -42,8 +41,7 @@ def permProdRight := (equivToIso finSumFinEquiv).inv ≫ OverColor.mk c2 ◁ σ
@[simp]
lemma permProdRight_toEquiv : Hom.toEquiv (permProdRight c2 σ) = finSumFinEquiv.symm.trans
(((Equiv.refl (Fin n2)).sumCongr (Hom.toEquiv σ)).trans finSumFinEquiv) := by
simp [permProdRight]
(((Equiv.refl (Fin n2)).sumCongr (Hom.toEquiv σ)).trans finSumFinEquiv) := rfl
/-- When a `prod` acts on a `perm` node in the left entry, the `perm` node can be moved through
the `prod` node via right-whiskering. -/

View file

@ -33,8 +33,7 @@ def braidPerm : OverColor.mk (Sum.elim c2 c ∘ ⇑finSumFinEquiv.symm) ⟶
@[simp]
lemma braidPerm_toEquiv : Hom.toEquiv (braidPerm c c2) = finSumFinEquiv.symm.trans
((Equiv.sumComm (Fin n2) (Fin n)).trans finSumFinEquiv) := by
simp [braidPerm]
((Equiv.sumComm (Fin n2) (Fin n)).trans finSumFinEquiv) := rfl
lemma finSumFinEquiv_comp_braidPerm :
(equivToIso finSumFinEquiv).hom ≫ braidPerm c c2 =