refactor: Remove super algebra file
This commit is contained in:
parent
2e5b66655e
commit
dcfc4b1318
4 changed files with 3 additions and 38 deletions
|
@ -1,31 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.RingTheory.GradedAlgebra.Basic
|
||||
import HepLean.Meta.Informal.Basic
|
||||
/-!
|
||||
|
||||
# Super Algebras
|
||||
|
||||
A super algebra is a special type of graded algebra.
|
||||
|
||||
It is used in physics to model the commutator of fermionic operators among themselves,
|
||||
aswell as among bosonic operators.
|
||||
|
||||
-/
|
||||
|
||||
informal_definition SuperAlgebra where
|
||||
math :≈ "A super algebra is a graded algebra A with a ℤ₂ grading."
|
||||
physics :≈ "A super algebra is used to model the commutator of fermionic operators among
|
||||
themselves, aswell as among bosonic operators."
|
||||
ref :≈ "https://en.wikipedia.org/wiki/Superalgebra"
|
||||
|
||||
namespace SuperAlgebra
|
||||
|
||||
informal_definition superCommuator where
|
||||
math :≈ "The commutator which for `a ∈ Aᵢ` and `b ∈ Aⱼ` is defined as `ab - (-1)^(i * j) ba`."
|
||||
deps :≈ [``SuperAlgebra]
|
||||
|
||||
end SuperAlgebra
|
|
@ -31,8 +31,7 @@ def permProdLeft := (equivToIso finSumFinEquiv).inv ≫ σ ▷ OverColor.mk c2
|
|||
|
||||
@[simp]
|
||||
lemma permProdLeft_toEquiv : Hom.toEquiv (permProdLeft c2 σ) = finSumFinEquiv.symm.trans
|
||||
(((Hom.toEquiv σ).sumCongr (Equiv.refl (Fin n2))).trans finSumFinEquiv) := by
|
||||
simp [permProdLeft]
|
||||
(((Hom.toEquiv σ).sumCongr (Equiv.refl (Fin n2))).trans finSumFinEquiv) := rfl
|
||||
|
||||
/-- The permutation that arises when moving a `perm` node in the right entry through a `prod` node.
|
||||
This permutation is defined using left-whiskering and composition with `finSumFinEquiv`
|
||||
|
@ -42,8 +41,7 @@ def permProdRight := (equivToIso finSumFinEquiv).inv ≫ OverColor.mk c2 ◁ σ
|
|||
|
||||
@[simp]
|
||||
lemma permProdRight_toEquiv : Hom.toEquiv (permProdRight c2 σ) = finSumFinEquiv.symm.trans
|
||||
(((Equiv.refl (Fin n2)).sumCongr (Hom.toEquiv σ)).trans finSumFinEquiv) := by
|
||||
simp [permProdRight]
|
||||
(((Equiv.refl (Fin n2)).sumCongr (Hom.toEquiv σ)).trans finSumFinEquiv) := rfl
|
||||
|
||||
/-- When a `prod` acts on a `perm` node in the left entry, the `perm` node can be moved through
|
||||
the `prod` node via right-whiskering. -/
|
||||
|
|
|
@ -33,8 +33,7 @@ def braidPerm : OverColor.mk (Sum.elim c2 c ∘ ⇑finSumFinEquiv.symm) ⟶
|
|||
|
||||
@[simp]
|
||||
lemma braidPerm_toEquiv : Hom.toEquiv (braidPerm c c2) = finSumFinEquiv.symm.trans
|
||||
((Equiv.sumComm (Fin n2) (Fin n)).trans finSumFinEquiv) := by
|
||||
simp [braidPerm]
|
||||
((Equiv.sumComm (Fin n2) (Fin n)).trans finSumFinEquiv) := rfl
|
||||
|
||||
lemma finSumFinEquiv_comp_braidPerm :
|
||||
(equivToIso finSumFinEquiv).hom ≫ braidPerm c c2 =
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue