refactor: Split files
This commit is contained in:
parent
625ef5f431
commit
dd555b2037
9 changed files with 1721 additions and 1481 deletions
194
HepLean/PerturbationTheory/Wick/Koszul/OperatorMap.lean
Normal file
194
HepLean/PerturbationTheory/Wick/Koszul/OperatorMap.lean
Normal file
|
@ -0,0 +1,194 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.Species
|
||||
import HepLean.Lorentz.RealVector.Basic
|
||||
import HepLean.Mathematics.Fin
|
||||
import HepLean.SpaceTime.Basic
|
||||
import HepLean.Mathematics.SuperAlgebra.Basic
|
||||
import HepLean.Mathematics.List
|
||||
import HepLean.Meta.Notes.Basic
|
||||
import Init.Data.List.Sort.Basic
|
||||
import Mathlib.Data.Fin.Tuple.Take
|
||||
import HepLean.PerturbationTheory.Wick.Koszul.SuperCommuteM
|
||||
/-!
|
||||
|
||||
# Koszul signs and ordering for lists and algebras
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
|
||||
noncomputable section
|
||||
|
||||
class SuperCommuteCenterMap {A : Type} [Semiring A] [Algebra ℂ A]
|
||||
(f : FreeAlgebra ℂ I →ₐ[ℂ] A) : Prop where
|
||||
prop : ∀ i j, f (superCommute q (FreeAlgebra.ι ℂ i) (FreeAlgebra.ι ℂ j)) ∈ Subalgebra.center ℂ A
|
||||
|
||||
namespace SuperCommuteCenterMap
|
||||
|
||||
variable {I : Type} {A : Type} [Semiring A] [Algebra ℂ A]
|
||||
(f : FreeAlgebra ℂ I →ₐ[ℂ] A) [SuperCommuteCenterMap f]
|
||||
|
||||
lemma ofList_fst (q : I → Fin 2) (i j : I) :
|
||||
f (superCommute q (ofList [i] xa) (FreeAlgebra.ι ℂ j)) ∈ Subalgebra.center ℂ A := by
|
||||
have h1 : f (superCommute q (ofList [i] xa) (FreeAlgebra.ι ℂ j)) =
|
||||
xa • f (superCommute q (FreeAlgebra.ι ℂ i) (FreeAlgebra.ι ℂ j)) := by
|
||||
rw [← map_smul]
|
||||
congr
|
||||
rw [ofList_eq_smul_one, ofList_singleton]
|
||||
rw [map_smul]
|
||||
rfl
|
||||
rw [h1]
|
||||
refine Subalgebra.smul_mem (Subalgebra.center ℂ A) ?_ xa
|
||||
exact prop i j
|
||||
|
||||
lemma ofList_freeAlgebraMap {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (c : (Σ i, f i)) (x : ℂ)
|
||||
{A : Type} [Semiring A] [Algebra ℂ A] (F : FreeAlgebra ℂ (Σ i, f i) →ₐ[ℂ] A)
|
||||
[SuperCommuteCenterMap F] (b : I) :
|
||||
F ((superCommute fun i => q i.fst) (ofList [c] x) ((freeAlgebraMap f) (FreeAlgebra.ι ℂ b)))
|
||||
∈ Subalgebra.center ℂ A := by
|
||||
rw [freeAlgebraMap_ι]
|
||||
rw [map_sum, map_sum]
|
||||
refine Subalgebra.sum_mem (Subalgebra.center ℂ A) ?h
|
||||
intro n hn
|
||||
exact ofList_fst F (fun i => q i.fst) c ⟨b, n⟩
|
||||
|
||||
end SuperCommuteCenterMap
|
||||
|
||||
lemma superCommuteTake_superCommuteCenterMap {I : Type} (q : I → Fin 2) (lb : List I) (xa xb : ℂ) (n : ℕ)
|
||||
(hn : n < lb.length) {A : Type} [Semiring A] [Algebra ℂ A] (f : FreeAlgebra ℂ I →ₐ[ℂ] A)
|
||||
[SuperCommuteCenterMap f] (i : I) :
|
||||
f (superCommuteTake q [i] lb xa xb n hn) =
|
||||
f (superCommute q (ofList [i] xa) (FreeAlgebra.ι ℂ (lb.get ⟨n, hn⟩)))
|
||||
* (superCommuteCoef q [i] (List.take n lb) •
|
||||
f (ofList (List.eraseIdx lb n) xb)) := by
|
||||
have hn : f ((superCommute q) (ofList [i] xa) (FreeAlgebra.ι ℂ (lb.get ⟨n, hn⟩))) ∈
|
||||
Subalgebra.center ℂ A := SuperCommuteCenterMap.ofList_fst f q i (lb.get ⟨n, hn⟩)
|
||||
rw [Subalgebra.mem_center_iff] at hn
|
||||
rw [superCommuteTake, map_mul, map_mul, map_smul, hn, mul_assoc, smul_mul_assoc,
|
||||
← map_mul, ← ofList_pair]
|
||||
congr
|
||||
· exact Eq.symm (List.eraseIdx_eq_take_drop_succ lb n)
|
||||
· exact one_mul xb
|
||||
|
||||
|
||||
lemma superCommuteTakeM_F {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (c : (Σ i, f i)) (r : List I) (x y : ℂ) (n : ℕ)
|
||||
(hn : n < r.length)
|
||||
{A : Type} [Semiring A] [Algebra ℂ A] (F : FreeAlgebra ℂ (Σ i, f i) →ₐ[ℂ] A)
|
||||
[SuperCommuteCenterMap F] :
|
||||
F (superCommuteTakeM q [c] r x y n hn) = superCommuteCoefM q [c] (List.take n r) •
|
||||
(F (superCommute (fun i => q i.1) (ofList [c] x) (freeAlgebraMap f (FreeAlgebra.ι ℂ (r.get ⟨n, hn⟩))))
|
||||
* F (ofListM f (List.eraseIdx r n) y)) := by
|
||||
rw [superCommuteTakeM]
|
||||
rw [map_smul]
|
||||
congr
|
||||
rw [map_mul, map_mul]
|
||||
have h1 : F ((superCommute fun i => q i.fst) (ofList [c] x) ((freeAlgebraMap f) (FreeAlgebra.ι ℂ (r.get ⟨n, hn⟩))))
|
||||
∈ Subalgebra.center ℂ A :=
|
||||
SuperCommuteCenterMap.ofList_freeAlgebraMap q c x F (r.get ⟨n, hn⟩)
|
||||
rw [Subalgebra.mem_center_iff] at h1
|
||||
rw [h1, mul_assoc, ← map_mul]
|
||||
congr
|
||||
rw [ofListM, ofListM, ofListM, ← map_mul]
|
||||
congr
|
||||
rw [← ofList_pair, one_mul]
|
||||
congr
|
||||
exact Eq.symm (List.eraseIdx_eq_take_drop_succ r n)
|
||||
|
||||
|
||||
lemma koszulOrder_superCommuteM_le {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (r : List I) (x : ℂ)
|
||||
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
|
||||
(i : (Σ i, f i)) (hi : ∀ j, le1 j i)
|
||||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ A) [SuperCommuteCenterMap F] :
|
||||
F (koszulOrder le1 (fun i => q i.fst)
|
||||
(superCommute (fun i => q i.1) (FreeAlgebra.ι ℂ i) (ofListM f r x))) = 0 := by
|
||||
sorry
|
||||
|
||||
lemma koszulOrder_of_le_all {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (r : List I) (x : ℂ) (le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
|
||||
(i : (Σ i, f i)) (hi : ∀ j, le1 j i)
|
||||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ A) [SuperCommuteCenterMap F] :
|
||||
F (koszulOrder le1 (fun i => q i.fst)
|
||||
(ofListM f r x * FreeAlgebra.ι ℂ i))
|
||||
= superCommuteCoefM q [i] r • F (koszulOrder le1 (fun i => q i.fst)
|
||||
(FreeAlgebra.ι ℂ i * ofListM f r x)) := by
|
||||
conv_lhs =>
|
||||
rhs
|
||||
rhs
|
||||
rw [← ofList_singleton]
|
||||
rw [ofListM_ofList_superCommute q]
|
||||
rw [map_sub]
|
||||
rw [sub_eq_add_neg]
|
||||
rw [map_add]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
rhs
|
||||
rw [map_smul]
|
||||
rw [← neg_smul]
|
||||
rw [map_smul, map_smul, map_smul]
|
||||
rw [ofList_singleton, koszulOrder_superCommuteM_le]
|
||||
· simp
|
||||
· exact fun j => hi j
|
||||
|
||||
lemma le_all_mul_koszulOrder {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (r : List I) (x : ℂ) (le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
|
||||
(i : (Σ i, f i)) (hi : ∀ j, le1 j i)
|
||||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ A) [SuperCommuteCenterMap F] :
|
||||
F (FreeAlgebra.ι ℂ i * koszulOrder le1 (fun i => q i.fst)
|
||||
(ofListM f r x)) = F ((koszulOrder le1 fun i => q i.fst) (FreeAlgebra.ι ℂ i * ofListM f r x)) +
|
||||
F (((superCommute fun i => q i.fst) (ofList [i] 1))
|
||||
((koszulOrder le1 fun i => q i.fst) (ofListM f r x))) := by
|
||||
sorry
|
||||
/-
|
||||
rw [map_smul]
|
||||
rw [Algebra.mul_smul_comm, map_smul]
|
||||
change koszulSign le1 q r • F (FreeAlgebra.ι ℂ i * (ofListM f (List.insertionSort le1 r) x)) = _
|
||||
rw [← ofList_singleton]
|
||||
rw [ofList_ofListM_superCommute q]
|
||||
rw [map_add]
|
||||
rw [smul_add]
|
||||
rw [← map_smul]
|
||||
conv_lhs =>
|
||||
lhs
|
||||
rhs
|
||||
rw [← Algebra.smul_mul_assoc]
|
||||
rw [smul_smul, mul_comm, ← smul_smul]
|
||||
rw [ ofListM, ← map_smul, ← koszulOrder_ofList, ← koszulOrder_ofListM, ofList_singleton]
|
||||
rw [Algebra.smul_mul_assoc]
|
||||
rw [koszulOrder_mul_ge]
|
||||
rw [map_smul]
|
||||
rw [koszulOrder_of_le_all]
|
||||
rw [smul_smul]
|
||||
have h1 : (superCommuteCoefM q [i] (List.insertionSort le1 r) * superCommuteCoefM q [i] r) = 1 := by
|
||||
simp [superCommuteCoefM]
|
||||
have ha (a b : Fin 2): (if a = 1 ∧ b = 1 then
|
||||
-if a = 1 ∧ b = 1 then -1 else 1
|
||||
else if a = 1 ∧ b = 1 then -1 else (1 : ℂ)) = 1 := by
|
||||
fin_cases a <;> fin_cases b
|
||||
· rfl
|
||||
· rfl
|
||||
· rfl
|
||||
· simp only [Fin.mk_one, Fin.isValue, and_self, ↓reduceIte, neg_neg]
|
||||
exact ha _ _
|
||||
rw [h1]
|
||||
simp only [one_smul]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
rw [← map_smul, ← map_smul]
|
||||
rw [ ofListM, ← map_smul, ← koszulOrder_ofList, ← koszulOrder_ofListM]
|
||||
congr
|
||||
rw [ofList_singleton]
|
||||
· exact fun j => hi j
|
||||
· exact fun j => hi j.fst
|
||||
-/
|
||||
end
|
||||
end Wick
|
Loading…
Add table
Add a link
Reference in a new issue