feat: Some docs
This commit is contained in:
parent
63fcbf3da7
commit
dd8554a080
4 changed files with 9 additions and 3 deletions
|
@ -29,6 +29,7 @@ def PermGroup (n : ℕ) := Fin 6 → Equiv.Perm (Fin n)
|
|||
|
||||
variable {n : ℕ}
|
||||
|
||||
/-- The instance of a group on `PermGroup n` through the target space `Equiv.Perm (Fin n)`. -/
|
||||
@[simp]
|
||||
instance : Group (PermGroup n) := Pi.group
|
||||
|
||||
|
|
|
@ -274,10 +274,14 @@ def leftHandedAltEquiv : leftHanded ≅ altLeftHanded where
|
|||
rw [one_mulVec]
|
||||
rfl
|
||||
|
||||
/-- `leftHandedAltEquiv` acting on an element `ψ : leftHanded` corresponds
|
||||
to multiplying `ψ` by the matrix `!![0, 1; -1, 0]`. -/
|
||||
lemma leftHandedAltEquiv_hom_hom_apply (ψ : leftHanded) :
|
||||
leftHandedAltEquiv.hom.hom ψ =
|
||||
AltLeftHandedModule.toFin2ℂEquiv.symm (!![0, 1; -1, 0] *ᵥ ψ.toFin2ℂ) := rfl
|
||||
|
||||
/-- The inverse of `leftHandedAltEquiv` acting on an element`ψ : altLeftHanded` corresponds
|
||||
to multiplying `ψ` by the matrix `!![0, -1; 1, 0]`. -/
|
||||
lemma leftHandedAltEquiv_inv_hom_apply (ψ : altLeftHanded) :
|
||||
leftHandedAltEquiv.inv.hom ψ =
|
||||
LeftHandedModule.toFin2ℂEquiv.symm (!![0, -1; 1, 0] *ᵥ ψ.toFin2ℂ) := rfl
|
||||
|
|
|
@ -87,15 +87,13 @@ We also define the Higgs bundle.
|
|||
/-- The trivial vector bundle 𝓡² × ℂ². -/
|
||||
abbrev HiggsBundle := Bundle.Trivial SpaceTime HiggsVec
|
||||
|
||||
/-- The instance of a smooth vector bundle with total space `HiggsBundle` and fiber `HiggsVec`. -/
|
||||
instance : SmoothVectorBundle HiggsVec HiggsBundle SpaceTime.asSmoothManifold :=
|
||||
Bundle.Trivial.smoothVectorBundle HiggsVec
|
||||
|
||||
/-- A Higgs field is a smooth section of the Higgs bundle. -/
|
||||
abbrev HiggsField : Type := SmoothSection SpaceTime.asSmoothManifold HiggsVec HiggsBundle
|
||||
|
||||
instance : NormedAddCommGroup (Fin 2 → ℂ) := by
|
||||
exact Pi.normedAddCommGroup
|
||||
|
||||
/-- Given a vector in `HiggsVec` the constant Higgs field with value equal to that
|
||||
section. -/
|
||||
def HiggsVec.toField (φ : HiggsVec) : HiggsField where
|
||||
|
|
|
@ -110,10 +110,13 @@ open OverColor
|
|||
|
||||
variable (S : TensorSpecies)
|
||||
|
||||
/-- The field `k` of a TensorSpecies has the instance of a commuative ring. -/
|
||||
instance : CommRing S.k := S.k_commRing
|
||||
|
||||
/-- The field `G` of a TensorSpecies has the instance of a group. -/
|
||||
instance : Group S.G := S.G_group
|
||||
|
||||
/-- The field `repDim` of a TensorSpecies is non-zero for all colors. -/
|
||||
instance (c : S.C) : NeZero (S.repDim c) := S.repDim_neZero c
|
||||
|
||||
/-- The lift of the functor `S.F` to a monoidal functor. -/
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue