refactor: More lint
This commit is contained in:
parent
c9c7b25ea8
commit
dd8b1d731c
4 changed files with 7 additions and 7 deletions
|
@ -38,7 +38,7 @@ namespace complexLorentzTensor
|
||||||
|
|
||||||
/-- Basis vectors for complex Lorentz tensors. -/
|
/-- Basis vectors for complex Lorentz tensors. -/
|
||||||
def basisVector {n : ℕ} (c : Fin n → complexLorentzTensor.C)
|
def basisVector {n : ℕ} (c : Fin n → complexLorentzTensor.C)
|
||||||
(b : Π j, Fin (complexLorentzTensor.repDim (c j))) :
|
(b : Π j, Fin (complexLorentzTensor.repDim (c j))) :
|
||||||
complexLorentzTensor.F.obj (OverColor.mk c) :=
|
complexLorentzTensor.F.obj (OverColor.mk c) :=
|
||||||
PiTensorProduct.tprod ℂ (fun i => complexLorentzTensor.basis (c i) (b i))
|
PiTensorProduct.tprod ℂ (fun i => complexLorentzTensor.basis (c i) (b i))
|
||||||
|
|
||||||
|
|
|
@ -237,9 +237,9 @@ private lemma pauliMatrix_lower_basis_expand_prod' {n : ℕ} {c : Fin n → comp
|
||||||
exact pauliMatrix_lower_basis_expand_prod _
|
exact pauliMatrix_lower_basis_expand_prod _
|
||||||
|
|
||||||
lemma pauliMatrix_contract_pauliMatrix_aux :
|
lemma pauliMatrix_contract_pauliMatrix_aux :
|
||||||
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
|
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
|
||||||
PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor
|
PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor
|
||||||
= ((tensorNode
|
= ((tensorNode
|
||||||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
|
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
|
||||||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)).add
|
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)).add
|
||||||
((tensorNode
|
((tensorNode
|
||||||
|
@ -310,8 +310,8 @@ lemma pauliMatrix_contract_pauliMatrix_aux :
|
||||||
pauliMatrix_contr_lower_3_1_1]
|
pauliMatrix_contr_lower_3_1_1]
|
||||||
|
|
||||||
lemma pauliMatrix_contract_pauliMatrix_expand :
|
lemma pauliMatrix_contract_pauliMatrix_expand :
|
||||||
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
|
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
|
||||||
PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor =
|
PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor =
|
||||||
2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)
|
2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)
|
||||||
+ 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
+ 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
||||||
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
|
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
|
||||||
|
|
|
@ -139,7 +139,7 @@ lemma pauliMatrix_contr_down_3 :
|
||||||
fin_cases k <;> rfl
|
fin_cases k <;> rfl
|
||||||
|
|
||||||
lemma pauliMatrix_contr_down_3_tree : {(basisVector ![Color.down, Color.down] fun x => 3) | μ ν ⊗
|
lemma pauliMatrix_contr_down_3_tree : {(basisVector ![Color.down, Color.down] fun x => 3) | μ ν ⊗
|
||||||
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor =
|
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor =
|
||||||
(TensorTree.add
|
(TensorTree.add
|
||||||
((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0))))
|
((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0))))
|
||||||
(smul (-1) (tensorNode (basisVector pauliMatrixLowerMap
|
(smul (-1) (tensorNode (basisVector pauliMatrixLowerMap
|
||||||
|
|
|
@ -203,7 +203,7 @@ lemma smul_prod {n m: ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
||||||
simp [prod_tensor, smul_tensor, tmul_smul, smul_tmul, map_smul]
|
simp [prod_tensor, smul_tensor, tmul_smul, smul_tmul, map_smul]
|
||||||
|
|
||||||
lemma prod_smul {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
lemma prod_smul {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
||||||
(a : S.k) (t1 : TensorTree S c) (t2 : TensorTree S c1) :
|
(a : S.k) (t1 : TensorTree S c) (t2 : TensorTree S c1) :
|
||||||
(prod t1 (smul a t2)).tensor = (smul a (prod t1 t2)).tensor := by
|
(prod t1 (smul a t2)).tensor = (smul a (prod t1 t2)).tensor := by
|
||||||
simp [prod_tensor, smul_tensor, tmul_smul, smul_tmul, map_smul]
|
simp [prod_tensor, smul_tensor, tmul_smul, smul_tmul, map_smul]
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue